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Abstract—A reasonable node selection criterion (NSC) is cru-
cial for the network reduction in power systems. In contrast to the
previous works that only consider structure property, this paper
proposes a comprehensive and quantitative NSC considering both
structural and electrical properties. The proposed NSC is devel-
oped by employing the evidential reasoning approach, in which
the quasi-one-hot encoding is used to determine the evaluation
grades of different criteria or attributes. Then, different criteria
are combined through the multi-evidence reasoning. Eventually,
the utility evaluation is used to derive the quantitative NSC.
Besides, the ER can be readily extended to multiple criteria
while considering the uncertainty in the evaluation process
simultaneously. The reduced models with higher accuracy can
be built by combining the proposed NSC with the existing model
reduction algorithms. The case studies on a 30-node power grid
substantiate the practicality of the proposed NSC.

Index Terms—complex networks, evidential reasoning, net-
work reduction, multi-attribute decision-making

I. INTRODUCTION

Network reduction is crucial to the operation and analysis
of the interconnected power gird [1]. The goal of the network
reduction or equivalent is to represent the original power
grid with a smaller equivalent model, which can enhance the
computation speed, alleviate the memory requirement, and
improve the analysis efficiency. For example, it is reported in
[2] that the time for evaluating the impact of the integration
of photovoltaic on a 621-bus feeder was reduced by up to
96% with the help of network reduction. Moreover, the control
centers of different areas of power grids may be unwilling to
share their private data such as detailed models with others
due to independent operation. Network reduction is one of
the handy techniques to tackle this issue. For instance, [3]
employs network reduction techniques to calculate the total
transfer capability of the multi-area power grids.

In general, the reduction or equivalence approaches can be
categorized into the dynamic equivalent methods and static
equivalent methods (SEMs). The former considers the dynamic
and transient characteristics of the power grids while the
latter focus on static analysis and operation. We focus on
the latter in this paper. Researchers have proposed different
SEMs to construct equivalent models, among which Ward-
type [1], radial equivalent independent circuits (REI) [4], bus

aggregation [5], [6] and measurement-based methods [7], [8]
are adopted widely. Generally speaking, the procedure of the
SEMs can be summarized into four steps: 1. differentiate the
retained nodes and eliminated nodes; 2. construct the reduced
model with circuit components such as the equivalent lines,
equivalent generators and equivalent loads; 3. formulate the
specific mathematical models (nonlinear equations or opti-
mization model) to determine the reduced model parameters;
4. access the accuracy of the reduced model.

Differentiating retained nodes and eliminated nodes plays
a crucial role in the network reduction. For some specific
applications such as the interconnected power grid analysis
[1], [7], people tend to be interested in only one subsystem.
In this scenario, the retained nodes are highly aggregated in
one subsystem, in which a retained area can be formed. The
retained area and the eliminated area are coupled through
only a few boundary nodes, which means the topology and
electrical connections between the retained and eliminated area
are weak. However, in some issues such as optimal generation
investment planning [6], [9] and distributed energy resource
planning [2], the retained nodes are scattered across the whole
system. In [9], the criteria to select the retained nodes is
transmission congestion. Those lines with the highest degree of
congestion and their corresponding end nodes are preserved. In
[6], the network to be reduced is divided into different modules
by utilizing the power transfer distribution factors (PTDFs).
The nodes within a module aggregate into one artificial node
on a module level. [2] retains the critical nodes selected by
users and identify the rest of them using topology analysis.
The node selection strategy in [2] is tailored specially for the
distribution systems with radial topology [10], thus it can not
be applied in the transmission systems directly. Overall, these
node selection strategies are either experience-dependent or
they only considered one of the critical characteristics at a
time (topology, congestion, etc.). Thus, a comprehensive and
judicious node selection criterion (NSC) is imperative for the
model reduction of power grids.

Complex networks are known to be a powerful and flexible
representation formalism. The complex networks can represent
not only the feature values of individuals but also connection



relationships among different individuals. Based on the match-
ing of bus-node and branch-edge between the power grid and
the complex networks, numerous researches have attempted
to analyze the power grids from the perspectives of complex
networks [11], [12]. Leveraging the complex networks theory
can unveil the essential topology properties such as between-
ness and closeness of power grids. By combining the electrical
features of power grids and topology properties derived from
the complex network, the synthetic properties can be identified.
These properties are useful in network reduction problems. Not
only can they guide the strategy of retaining nodes, but also
they provide a new angle for evaluating the accuracy of the
equivalent models.

In this paper, a comprehensive and quantitative node se-
lection criterion for network reduction is proposed for the
first time. The criterion is derived through the combination
of dual criteria using the evidential reasoning approach (ER),
which is generic and can be extended to involve multiple
criteria. In particular, it takes both the electrical features and
topology into account to fully exploit the system information.
The reduced model derived from the proposed criterion is
closer to the full model compared with those from a single
criterion on various structural properties. The feasibility of the
proposed criterion is verified through the case studies upon
a 30-node power grid. Furthermore, the proposed method to
derive the criterion can preprocess nodal features in graph
learning. Thus its application has a promising future in the
field of machine learning which deals with graph data, such as
network representation learning [13] and graph convolutional
networks [14].

II. NODES IMPORTANCE CRITERIA

In this section, two criteria for evaluating the importance of
nodes in power grids are investigated. One is the extended be-
tweenness, which is analogous to the betweenness centrality in
complex networks. The other is net-ability, which is analogous
to the global efficiency in complex networks. In addition to
the abstract topological properties, these two criteria consider
the detailed physical characteristics of the electrical networks.
The nodal rankings of the electrical networks obtained from
these two criteria provide straightforward guidelines to NSC:
the nodes with high ranking can be reserved, whereas those
with low ranking can be eliminated.

A. Extended Betweenness

From the perspective of complex networks, a power grid
can be represented as a graph G = {V,E,W}, where V is
the node set, E is the line set, and W is the weight set for
branches.

Betweenness centrality is a metric which can assess the
importance of nodes by quantifying the role of nodes in the
information exchange of complex networks. Nodal between-
ness is defined by the probability of the node exists in the
shortest paths of all node pairs of the graph. The mathematical

formulation of betweenness centrality can be expressed as
[15]:

B0(v) =
∑

v 6=f 6=t∈V

ϕft(v)

ϕft
(1)

where subscripts f and t denote the node pair {f, t},∑
f 6=t ϕft denote the number of shortest paths of the node

pairs, and ϕst(v) is the number of the shortest paths that go
through node v.

However, (1) is not a pragmatic criterion to determine
the importance of nodes in power grids since it ignores the
physical features of power grids. To address this issue, an
extended betweenness criterion was developed in [11]. One
feature of this criterion is that it only considers the node pairs
between generator nodes and load nodes. The definition of the
extended betweenness is based on PTDFs, which represent
the linearized relationship between the power injections of
node pairs and the branch flows. The extended betweenness
is formulated as:

B̂(v) =
1

2

∑
g∈Gen

∑
d∈D

κdg
∑
l∈Lv

|τgdl |, v 6= g 6= d ∈ V (2)

where Gen is the generator nodes set, D is the loads nodes
set, τgdl is the PTDF w.r.t node pair {g, d} and line l, Lv is
the set of lines connecting node v directly. κdg is defined as
the power transmission capacity, which is formulated as:

κdg = min
l∈L

(
Pmax
l

|τgdl |
) (3)

where Pmax
l is the capacity of line l.

More specifically, κdg represents the maximum transmission
power of the node pair {g, d} because at least one line in the
system will reach its capacity when the power transfer between
the node pair {g, d} is κdg . Thus, (2) can be interpreted as the
total power flowing through the node v when all nodes pairs
{g, d} in system transfer the power with the amount of κdg .

B. Net-ability

In complex networks theory, the global efficiency of a
network is a metric measuring how efficiently it exchanges
information. The formulation of the global efficiency of com-
plex networks is:

Eglobal =
1

NV (NV − 1)

∑
f 6=t∈V

d−1
ft (4)

where dft is the shortest path length between node f and t
and NV is the number of nodes.

[12] defines the efficiency of electrical networks by replac-
ing the path length with the electrical distance. The electrical
distance is determined by the impedance matrix of the system
and the detailed calculation can be referred to [12]. Therefore,
the global efficiency of power grids can be represented as:

Aglobal =
1

NGenND

∑
g∈Gen

∑
d∈D

κdg
Zd
g

(5)

where NGen and ND are the number of generator and load
nodes, respectively. Zd

g is the equivalent impedance of the node
pair {g, d}.



Dropping nodes from the system one by one and evaluating
the impact they cause is a useful way to measure the impor-
tance of nodes. Note that the removal of nodes will lead to
the removal of corresponding lines as well. In this manner, the
net-ability of node v is defined as:

∆Av =
|Aori

global −A
re,v
global|

Aori
global

(6)

where Aori
global and Are,v

global are the global efficiency of the
original and the reduced model without node v, respectively.

III. COMPREHENSIVE CRITERION BASED ON EVIDENTIAL
REASONING

According to the simulation studies presented in [11],
there is a discrepancy between the node rankings obtained
from the extended betweenness and net-ability. Therefore, a
comprehensive ranking criterion that can take into account the
multiple evaluation criteria simultaneously is of great interest.

Evidential reasoning (ER) was developed in [16] to tackle
the multi-attribute decision making (MADM) under uncer-
tainty. The ER can adequately consider multiple criteria and
their uncertainty. In this section, a comprehensive criterion is
developed using the ER. The ER method is constituted by
three steps: multi-attribute analysis, multi-evidence reasoning,
and utility evaluation, which are described in detail below.

A. Multi-attribute analysis

The net-ability and extended betweenness are regarded as
two attributes of ER in this paper. For assessing the state of
each attribute, the evaluation grades are defined as:

S = {S1, S2, . . . , Sn, . . . , SN} (7)

In our derivation, the elements in S is constituted by the index
of nodal ranking, thus N is identical to NV . Note that the
descending ranking is adopted in this paper.

Afterwards, for each node x, we can determine the degree
of belief of each attribute on S:

Ψx(aj) = {(Sn, δn,j , n = 1, . . . , N)} j = 1, . . . ,Λ (8)

This equation indicates the attribute aj of node x has δn,j
degree of belief on Hn. Note that δn,j ≥ 0 and

∑N
n=1 δn,j ≤

1. Λ is the number of attributes and is set to 2 (the number
of criteria) in this case.

Considering the nature of the ranking problem, the assign-
ment of δn,j adopts the one-hot encoding. Specifically, in this
case, δn,j is assigned to 0.9 if the node ranks nth in attribute
j and the rest grades of attribute j is set to 0. Setting the
degree of belief to 0.9 rather than 1 represents the uncertainty
of the criterion. The uncertainty means one specific criterion
is not able to include the overall information of the system.
In practical application, assessors can adjust these parameters
to represent the degree of comprehensiveness of criterion.
For illustration, Table I displays the basic assessment table
of a three-node system, in which the rank of nodes on the
extended betweenness and net-ability are {3,2,1} and {1,2,3},
respectively.

B. Multi-evidence reasoning

Afterward, the function of multi-evidence reasoning is com-
bining multiple attributes to acquire a synthetic attribute.

Let ωj denote the weight of attribute j. Define en,j as the
basic probability mass, which represent the weighted degree of
belief and can be calculated by en,j = ωjδn,j . The remaining
probability mass eS,j represent the uncertainty in evaluation
grade, and is decomposed into ēS,j = 1 − ωj and ẽS,j =

ωj(1−
∑N

n=1 δn,j).
The aggregation of attributes is conducted in a recursive

manner, which starts from the first attribute and ends in the
last attribute. Denote en,I(j), ẽS,I(j), and ēS,I(j) be the basic
probability mass, the first remaining probability mass, and the
second remaining probability mass after combining the first j
(from 1 to j) attribute, respectively. The recursive processes
are developed as [16], [17]:

{Hn} : en,I(j+1) = KI(j+1)en,I(j)en,j+1

+KI(j+1)(eS,I(j)en,j+1 + en,I(j), eS,j+1)
(9)

eS,I(j) = ẽS,I(j) + ēS,I(j) (10)

{S} : ẽS,I(j+1) = KI(j+1)ẽS,I(j)ẽS,j+1

+KI(j+1)(ēS,I(j)ẽS,j+1 + ẽn,l(j)ēS,j+1)
(11)

ēS,I(j+1) = KI(j+1)ēS,I(j)ēS,j+1 (12)

where KI(j+1) is the aggregation coefficient and can be
calculated by:

KI(j+1) = (1−
N∑

k=1,k 6=t

N∑
t=1

et,I(j)ek,j+1)−1 (13)

The attributes-combined degree of belief δcom
n corresponding

to the grade Sn is calculated by:

{Sn} : δcom
n = (1− ēS,I(Λ))

−1en,I(Λ) (14)

The uncertain attributes-combined degree of belief δS is
calculated by:

{S} : δS = (1− ēS,I(Λ))
−1ẽn,I(Λ) (15)

Consequently, Ψ in (8) can be compacted as the attributes-
combined form:

Ψ̃y = Ψy (a1 ⊕ a2 · · · ⊕ aj ⊕ · · · ⊕ aΛ) = {(Sn, δ
com
n )}

(16)
where ⊕ is the combination operator.

With (16), we can obtain the attributes-combined evaluation
table for the ranking of nodes. Table II displays such a table
for the three-node system we discuss above.

C. Utility Evaluation

It is not straightforward to rank the nodes with the attributes-
combined evaluation table. Eventually, utility evaluation is
used to determine the ultimate ranking of the nodes. First,
we can define the utility function u as:

u(Hn) =
N − n
N

n = 1, 2, · · · , N (17)



TABLE I
AN ILLUSTRATIVE EXAMPLE OF Ψ(aj) OF THREE-NODE SYSTEM

Node Attribute Evaluation grade
1 2 3 uncertainty

1 Extended betweenness 0 0 0.9 0.1
Net-ability 0.9 0 0 0.1

2 Extended betweenness 0 0.9 0 0.1
Net-ability 0 0.9 0 0.1

3 Extended betweenness 0.9 0 0 0.1
Net-ability 0 0 0.9 0.1

TABLE II
AN ILLUSTRATIVE EXAMPLE OF Ψ̃ OF THREE-NODE SYSTEM

Node Evaluation grade
1 2 3 uncertainty

1 0.452 0 0.452 0.096
2 0 0.93 0 0.07
3 0.452 0 0.452 0.096

By assigning the δS to the utility function u(S1) and u(SN ),
we can obtain the maximum, minimum and average utilities
for node x:

umin(x) =

N−1∑
n=1

δnu (Sn) + (δN + δS)u (SN ) (18)

umax(x) = (δ1 + δS)u (S1) +

N∑
n=2

δnu (Sn) (19)

uavg(x) =
(umax(x) + umin(x))

2
(20)

Herein average utilities are regarded as the ultimate criterion
for ranking the importance of nodes. The development of
average utilities here involves extended betweenness, net-
ability, and uncertainty. After obtaining the average utility for
each node in the system, we can rank the nodes in power
grids, thereby determining the retained nodes in the network
reduction. ER is a flexible approach. Apart from the net-ability
and extended betweenness, other criteria can be integrated into
the ER approach readily by modifying the attributes set.

IV. NETWORK REDUCTION

With the comprehensive criterion derived from ER, the
retained nodes and eliminated nodes in power grids can be dif-
ferentiated. The modified Ward equivalence method developed
in [9] is adopted in this paper to achieve network reduction.
Note that the method developed in [9] is a direct current (DC)
power flow-based method, which is designed mainly for the
transmission network.

The reduction procedure can be summarized as the follow-
ing steps:
• Calculate the comprehensive criterion developed in Sec-

tion III. Rank the nodes in systems using this criterion
and then differentiate the retained and eliminated nodes.

• Apply the conventional Ward equivalence method to the
power grids to remove all the eliminated nodes. Remove
the equivalent branches with the abnormal equivalent
reactance.

• Extend the retained nodes set to include all generator
nodes. Conduct Ward equivalence again.

• Transfer the external generators to retained nodes using
the shortest electrical path length.

• Obtain the voltage phase angles of the nodes of the full
model using the DC load flow calculation. Move and
redistribute the external loads by matching the load flow
results of the reduced model to those of the full model.

V. CASE STUDIES

To demonstrate the practicality of the proposed node se-
lection criterion, case studies are performed on a 30-nodes
system, of which the parameters are detailed in [18]. There
are six generators and 41 branches in this system. The test
system is plotted in Fig. 1, where orange color denotes the
generator nodes.

Four criteria are used to rank the importance of nodes in the
test system, namely, the comprehensive criterion, the extended
betweenness, the net-ability, and the line congestion, and the
abbreviations of these four criteria are C1, C2, C3, and C4,
respectively. The end nodes of the most congested lines are
considered to be important in C4. The lowest-ranked ten nodes,
according to C1, C2, C3, and C4, are shown in table III.

TABLE III
LOWEST RANKED TEN NODES FROM DIFFERENT CRITERIA

Criterion Rank
21 22 23 24 25 26 27 28 29 30

C1 20 19 14 16 18 29 30 8 26 11
C2 23 1 7 14 8 29 30 11 13 26
C3 14 20 8 19 17 18 25 16 12 11
C4 4 6 9 10 11 12 14 15 21 28

To further compare C1, C2, C3, and C4, all the nodes listed
in table III are selected as eliminated nodes when building
three different reduced models of the test system. The reduced
models corresponding to C1, C2, C3, and C4 are denoted as
eq1, eq2, eq3, and eq4. The layout of the eq1 model is depicted
in Fig. 1, of which branches 10-15, 12-15, and 12-17 are the
equivalent branches.

The reduced models derived from the method in Section
IV can keep the consistency of DC load flow results. As the
essential metrics for evaluating the accuracy of the reduced
network, the topological properties of the full and reduced
networks are reported in Table IV, of which Eglob is defined in
(4), ρ is the density of the network, lw and l0 are the weighted
and unweighted average path length, respectively, Cw and
C0 are the weighted and unweighted closeness centrality,
respectively, Bw and B0 are the weighted and unweighted
betweenness centrality, respectively, and davg is the average
degree. Herein the line weights are set as the normalized
reactance of the lines. If one of the reduced models is closer to
the full model on these properties compared to others, it means
this reduced model can imitate the original model better. The
relative error index of eq1, eq2, eq3 and eq4 corresponding to
the data in Table IV are reported in Fig. 2. As shown in Table
IV and Fig. 2, overall, the eq1 is the most accurate reduced
model among eq1, eq2, and eq3. For example, the error of
eq1 is 20.0% of eq2, 4.2% of eq3, and 4.0% of eq4 on lw,
respectively. The error of eq1 is 82.0% of eq2, 12.4% of eq3,
and 9.6% of eq4 on Cw, respectively. The results demonstrate



Fig. 1. Abstract layout of the full network and the reduced network 1

the superiority of the proposed criterion. The reason for the
improvement of accuracy is that the proposed criterion can
fully exploit the system information by considering various
features of power grids simultaneously.

TABLE IV
TOPOLOGICAL PROPERTIES OF THE FULL AND REDUCED NETWORKS

ori eq1 eq2 eq3 eq4
Eglob 0.3780 0.4241 0.4274 0.4729 0.5708
ρ 0.0943 0.1421 0.1421 0.1684 0.2579
lw 1.0566 1.0240 0.8936 0.2824 0.2358
l0 3.3057 3.2053 3.0632 2.6684 2.1263
Cw 0.0353 0.0572 0.0620 0.2124 0.2629
C0 0.0107 0.0172 0.0178 0.0203 0.0257
Bw 39.95 25.45 21.85 20.15 15.50
B0 33.43 20.95 19.60 15.85 10.70
davg 2.7333 2.7000 2.7000 3.2000 4.900
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Fig. 2. The errors w.r.t topological properties

VI. CONCLUSION

In this paper, a node selection criterion for network reduc-
tion in power grids was proposed. The proposed criterion can

be calculated by integrating the extended betweenness and net-
ability using evidential reasoning approach (ER). The case
studies were conducted on a 30-nodes system. The results
showed that the reduced model built upon the proposed crite-
rion is more accurate than other models on various structural
properties, which justify the advantage of the integration of the
proposed criterion into the network reduction. The proposed
method to derive the criterion is one of nodal feature pre-
processing approaches in graph learning. Achieving network
reduction via graph learning will be developed in future work.
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