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Background

The appeal for the low-carbon future spurs the increasing integration of electric vehicles 
(EVs) to the power grid.

This trend also brings great challenges to the stability and reliability of the operation of 
power grid.

Through providing great flexibility and smoothing power fluctuation, battery storage 
systems (BSS) are proven to be a qualified solution to the large-scale integration of EV.



Background
 The investors-owned BSSs can be regarded as the independent entity to the 

power grid, and their ultimate goal is maximizing the revenue.

Due to the prominent flexibility and fast-response feature, BSS can provide 
multiple services associated with multiple revenue streams, including peak 
shaving, reserve, energy arbitrage (EA),  frequency regulation (FR), etc.

 By providing the stacked services, the owners of the BSS can exploit the whole 
capacity of the battery and earn extra profits.

 Fast Frequency Regulation Service, EV Charging, and Energy Arbitrage are 
considered.

Source: https://cleantechnica.com/2018/10/23/grid-scale-battery-storage-accelerating-in-colorado-australia/



Objective and Challenges

 Dispatchable capacity is shared between the stacked services dynamically.

Given the complexity of the modelling stacked services, a practical scheduling strategy 
for BSS should be developed to coordinate the multiple services under strict safe 
constraints of the power and energy capacity of the battery.

Solution: safe control algorithm for BSS

 Ubiquitous uncertainty during the operation.

Electricity market signals, and the power consumption of EV have inherently random 
features, which result in the battery state of charge (SOC) suffers from severe 
uncertainties. It is difficult for operators of the BSS  to estimate a firm regulation capacity.

Solution: data-driven deep reinforcement learning approach

Objective

Develop the optimal scheduling strategies of the investors-
owned BSS which performs stacked services.
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System Overview: Components and Functions

With the advantage of addressing sequential decision-making problem, the DRL agent is applied to perform the energy 
management task. 
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Stacked Services

• The frequency fluctuation in the power system is 
mainly caused by the mismatch between the 
generation and the load. 

• Frequency regulation is a tool employed by power 
grid operators to prevent the system frequency 
getting too high or too low. 

Fast Frequency Regulation Service

Source: reneweconomy.com



Fast Frequency Regulation Service

Reg A: a slower signal that is meant to 
recover larger and longer fluctuations in 
system conditions.

Reg D: a fast and dynamic signal that 
requires resources to respond quickly.

He, Guannan, Qixin Chen, Chongqing Kang, Pierre Pinson, and Qing Xia. "Optimal bidding strategy of battery storage in power markets 
considering performance-based regulation and battery cycle life." IEEE Transactions on Smart Grid 7, no. 5 (2015): 2359-2367.

PJM market model is adopted.

PJM generates two different 
types of automated signals that 
regulation market resources 
can follow.

It can be observed from the 
figure that RegD signals 
fluctuates more frequently. 

3-h sample profiles of RegA and RegD.



Fast Frequency Regulation Service

Reg A: a slower signal that is meant to 
recover larger, longer fluctuations in system 
conditions.

Reg D: a fast, dynamic signal that requires 
resources to respond almost 
instantaneously.

He, Guannan, Qixin Chen, Chongqing Kang, Pierre Pinson, and Qing Xia. "Optimal bidding strategy of battery storage in power markets 
considering performance-based regulation and battery cycle life." IEEE Transactions on Smart Grid 7, no. 5 (2015): 2359-2367.

RegD’s favorable characteristic 
for BSS is that it requires net 
zero energy over a 15-min time 
period (energy neutral), which 
reduces the amount of 
obligated reserved energy of 
BSS.

3-h sample profiles of RegA and 
RegD.

BSS is an ideal regulation 
resource for following the RegD 
signals due to its fast response 
feature.

Good match!



Fast Frequency Regulation Service

fractional frequency regulation signal (Reg D)

Data source: Byrne, R.H., Concepcion, R.J. and Silva-Monroy, C.A., 2016, July. Estimating potential revenue from electrical energy storage in PJM. In 2016 IEEE Power and Energy Society General Meeting (PESGM) 
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The Regulation D signal released by 
PJM ancillary services market

is the absolute area enclosed by the RegD curve over 1 hour.

(1)

time-resolution: 4s converted to 1h



Fast Frequency Regulation Service

He, Guannan, Qixin Chen, Chongqing Kang, Pierre Pinson, and Qing Xia. "Optimal bidding strategy of battery storage in power markets 
considering performance-based regulation and battery cycle life." IEEE Transactions on Smart Grid 7, no. 5 (2015): 2359-2367.

The revenue model of PJM is characterized by the introduction 
of mileage and the two-part payment based on the capacity 
bidding of the resources and the performance of the resources. 

Capacity Clearing Price

Performance Clearing 
Price 

is the ratio between the RegD mileage (absolute 
summation of movement) to that of RegA. Because 
RegD’s mileage is approximately three times that of 
RegA, the mileage ratio of RegD is approximately
three times larger as well. Thus, qualified resources 
following RegD would earn three times the 
performance revenue.

performance score of the resources
Performance score reflects how well the resource is 
following the regulation signal. 

Accuracy Delay Precision

Bidding power capacity 
of regulation

(2)



EV Charging

EV is modeled here as a random load. It can be partially or fully 
supplied by the BSS, depending on the decision of the BSS



Priority among Stacked Services

Unlike conventional constrained optimization technique, the 
existing DRL frameworks enable the agent to explore the 
environment to develop the optimal policy by choosing the 
action freely during the learning process.

To enforce the constraints, conventional DRL algorithms are 
dependent on designing the heuristic reward function to guide 
the learning process of the agent.

The proposed safe control algorithm dispatches the power 
capacity according to the priority of the stacked services in 
sequence, thereby bypassing the design of  the heuristic 
reward function. 



Priority among Stacked Services

• The control algorithm is based on the following 
priorities: the power capacity deployed for FFRS is 
determined first, then EV charging, and finally EA. 
The rationale is given as follows. 



Safe control algorithm 

 Derive the threshold
to prevent the over-charging and 
over-discharging.

 Dispatch based on or

 Update the upward/downward space 
of SOC; Update the maximum 
upward/downward available power 
capacity. 

Energy capacity
State of Charge



Safe control algorithm 

 Derive the threshold to prevent the over-discharging

 Dispatch charging power to EV based on the EV load and 

 Update the downward space of SOC; Update the maximum downward available power capacity 

The control logic for allocating power for charging EV is similar to that of frequency 
regulation. The main difference is that EV load will only lead to the discharging 
behavior of battery. The electricity flow here is only single direction.

, which is a ratio coefficient between 0-1 determined by EMU.



Safe control algorithm 

(1)

(2)

Purchase electricity

Sell electricity

revenue
cost
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Markov Decision Process

Considering the random nature of the PV generation and market 
signals, and the time-coupled feature of the SOC, the capacity 
scheduling for PV-BSS is essentially a discrete-time stochastic 
control process, which can be described as a Markov decision 
process (MDP). 



Markov Decision Process



Proximal Policy Optimization

• Proximal policy optimization (PPO) is the variant of Trust 
Region Policy Optimization (TRPO) and Advantage Actor-
Critic (A2C).

• PPO can guarantee the safe exploration of the agent while 
avoiding solving the complicated second-order optimization 
problem in TRPO.

• Compared with A2C, PPO is much more sample-efficient.
• Compared with deep Q networks(DQN), PPO is more 

appropriate in dealing with the continuous and multi-
dimensional action space.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.



Proximal Policy Optimization



Proximal Policy Optimization

If advantage is positive: Suppose the advantage for that state-action pair is 
positive, in which case its contribution to the objective reduces to

the advantage is positive
if

if

Measure how far the current policy is from the previous policy

Surrogate clipped objective function 

(1)

(2)

(3)

(4)



Stochastic Diagonal Gaussian Policy



Training Scheme

1. Initialization of the actor network and critic network.
2. Let agent interact with the environment and collect the set of 

trajectories samples.
3. Advantage estimation based on the current value function. 
4. Update the parameters of the policy network

5. Update the value function network

The steps 2, 3, 4, and 5 will repeat N epoch.



1 Overview

2 Safe Control Algorithm

3 Deep Reinforcement Learning Approach

4 Numerical Result

5 Concluding Remarks and Future Work



Test Parameters

• Case studies are conducted based on the real-world 
data from PJM energy and regulation market in 2018.

• Both PPO and A2C use multilayer perceptron (MLP) 
with two hidden layers as the policy network and value 
function network, respectively.

• The scheduling cycle is one week (168 h) in the case 
studies. Thus, the trajectory length is 168. The market 
data in 2018 are split into training and testing set: the 
first nine months are training set, and the rest three 
months are testing set. For each epoch, 12 trajectories 
are collected to update the PPO and A2C agents.



Test Parameters



Performance of PPO

Learning performance index: average weekly 
income

In terms of profitability, PPO outperforms A2C 
and  random policy by 50.6% and 23.5%, 
respectively. 

PPO uses only about 36*12*168 = 72576 
experience samples to achieve the optimal 
performance of A2C, while A2C needs 
175*12*168 = 352800 experience samples.

The performance upon the testing dataset can 
demonstrate the generalization of the DRL agent

PPO agent is dominant over the A2C agent and 
random agent.

PPO agent: $510,582
A2C agent: $484,779
Random agent: $328,462



Capacity Scheduling Result

 SOC curve of the battery is 
within the safe range over 
the whole scheduling 
cycle.

 The power capacity 
deployed to the stacked 
service is within the safe 
constraints.

 The power capacity of BSS 
deployed for performing 
FFRS is dominant over all 
other services most of the 
time.

 The trained PPO agent 
consumes only 78 ms to 
make the scheduling 
decision for a week.



Capacity Scheduling Result

Net profit: $21036
selling power to EV station: $9610.83 
EA: $834.30 
FFRS: $9729.48
deprecation cost: -$861.43

Most of the time, the PPO agent 
choose to purchase electricity at a 
relatively low price and sell at a 
relatively high price.
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• This research proposes a pragmatic solution to the capacity scheduling of 
BSS, which performs the stacked services. 

• A safe control algorithm of BSS is proposed to ensure the safe operation of the 
PV-BSS. 

• The PPO-based DRL agent is developed to cooperate with the control 
algorithm to improve the profitability of PBSS. 

• Case studies based on the real data of PJM energy and regulation market are 
conducted. The results demonstrate that the PPO agent with the proposed safe 
control algorithm is capable of generating the safe scheduling schemes while 
maximizing the net profit of BSS. 

• Comparative results demonstrate the superior performance of PPO agent to 
A2C agent in terms of optimization results and sample efficiency.

• A  more detailed and practical battery degradation model should be taken into 
consideration because the excessive usage of the battery caused by providing 
the stacked services will impair the lifespan of the battery. 

Concluding Remarks and Future Work
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