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Abstract: Equivalent modelling for active distribution networks (ADNs) is essential for improving the efficiency of analysing
transmission networks. Current equivalent modelling methods for ADNs neglect the probabilistic characteristics of renewable
energy sources (RESs) and loads. To address this issue, this study proposes a probabilistic equivalent modelling method
(PEMM) for ADNs considering the uncertainty of RESs and loads. The uncertainty of the RESs and loads is transferred to the
equivalent boundary bus injection using the properties of cumulant and power transfer matrices. The PEMM is extended to
incorporate the correlations of RESs through an orthogonal transformation. A sampling method using the Gaussian copula
function is employed to generate the correlated samples and the joint cumulants, providing the input data for the PEMM. The
comparative results of the case studies on two different test systems demonstrate the effectiveness of the PEMM. The
equivalent model developed in this study is a practical solution for analysing the transmission network efficiently and taking the
uncertainty of RESs and loads in the ADNs into account simultaneously.

1 Introduction
Because of the increasing appeal of the utilisation of clean energy,
large-scale renewable energy sources (RESs) are being integrated
into distribution networks [1–3]. Currently, the conventional
distribution networks are gradually becoming active distribution
networks (ADNs), which may supply surplus power to the
transmission network when RESs are abundant. Hence, the
analysis of coupled transmission and distribution systems (CTDSs)
must consider the impact of RESs. From the perspective of
transmission system operators (TSOs), it is impractical and
unnecessary to analyse the transmission side using the detailed
model of ADNs for two reasons. First, the scale and complexity of
ADNs impair the efficiency of the analysis procedure. Second,
TSOs and distribution system operators (DSOs) usually function
independently, which means that detailed information about them
is commercially sensitive and not transparent to each other. As an
essential tool to analyse transmission networks considering the
impact of RESs, equivalent methods for ADNs have recently
attracted the attention of researchers. The main goal of these
equivalent methods is to construct an equivalent model for ADNs
that can preserve the behaviours of the ADN while keeping the
structure and mathematical model as simple as possible.

The conventional (passive) distribution network usually
consists of loads, lines, distribution transformers, regulators,
switches shunt capacitors etc. In the previous works, the whole
model of the passive distribution network is assumed to be
deterministic when the equivalent model is needed. Under this
context, a deterministic equivalent model is developed, which
includes the deterministic equivalent load, equivalent boundary
shunt branch and sometimes deterministic equivalent generators if
the distributed generators (DGs) are considered [4]. The equivalent
model derived in a deterministic manner can guarantee the
consistency of the load flow before and after equivalence.

However, the conventional equivalent technique of the passive
distribution network is not appropriate for the ADNs anymore
because the ADNs are characterised by the penetration of RESs,
and the generation of RESs and loads is inherently stochastic [2, 3].
The modelling of renewable power generation is critical to the
equivalence of ADNs. To conduct the dynamic analysis, [5–7] use
an equivalent converter-connected synchronous generator to

represent the DGs in an ADN. In [8], photovoltaic (PV) generation
systems embedded with voltage support schemes in an ADN are
aggregated into a separate equivalent PV generator that preserves
the voltage support schemes. In [9], the equivalent model for DGs
is derived using a numerical approach, in which the reactive power
output and the inverter power loss of the DGs are considered. The
authors in [4, 10] adopt an equivalent generator to represent the
DGs in ADNs, and the nodes with DGs connected in the ADN are
regarded as either PQ nodes or PV nodes. The aforementioned
literatures [4–10] ignore the uncertainty of the RES-type DGs.
When analysing the transmission network, it is necessary to take
the uncertainties from the ADNs into account, because a
transmission network is usually connected with numerous ADNs
and ADN is one of the main sources of uncertainty from the
perspective of the transmission network. These uncertainties will
impact the secure and economic operation of the bulk power
system significantly. For example, in terms of the economic
dispatch, neglecting the uncertainty of RESs may result in an
untrustworthy operation schedule, and thus, operators may have to
deploy excessive reserve capacity [11]. Moreover, to obtain a
practical and feasible solution for the long-term planning and
congestion management of the bulk power system, it is imperative
for TSOs to incorporate the uncertainty from ADNs. When
examining the status of power grids, the TSOs must monitor and
evaluate the level of uncertainty of the system to ensure stability
and reliability. Under such context, it is imperative to develop an
equivalent model for ADNs which not only can ensure the
consistency of the load flow but also the probabilistic
characteristic.

In addition to the uncertain property, another critical feature of
RESs is the correlation. Owing to the fact that the regional scope of
ADNs is usually small and because the meteorological conditions
within ADNs are similar, the wind power generation in different
wind farms (WFs) in an ADN is correlated [12], as the PV
generation between different PV plants. Ignoring the correlation
can lead to biases in the analysis results for a system, resulting in
higher operating costs and higher risks to the stability of the power
system [13]. Hence, an equivalent model for ADNs should
consider the correlations among RESs. Usaola [14] used the
Cholesky decomposition to generate the correlated variables
representing linear correlations. Xie et al. [12] used the copula
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function to describe non-linear correlations. However, when using
the copula function to handle the correlations, few references
investigate the derivation of the joint cumulants, which are the
essential quantities of the joint probability distribution.

To summarise, few studies have considered the uncertainty of
RESs when developing the equivalent models for ADNs even
though the uncertainty of RESs is essential in the analysis and
optimisation of CTDS. In addition, the correlations among RESs
are seldom discussed in the current equivalent modelling methods.
Initially, the computational intractability and the independent
operation between DSOs and TSOs lead to the development of the
equivalent modelling techniques of the distribution system. Then
the trend of the transformation of the passive distribution system to
ADNs and the increasing penetration level of RESs in the level of
ADNs together necessitates developing a novel equivalent method
that can address the severe uncertainty. To this end, the emphasis of
this paper lies in developing the probabilistic equivalent modelling
method (PEMM) for ADN, which considers the correlated
uncertain power injections caused by RES and load. As shown in
Fig. (b), the correlated uncertain power injections are shifted to the
boundary via quantitative analysis of the power flow equations of
the ADNs which incorporate PV plants and WFs. PEMM has
resulted in a practical solution for analysing the transmission
network efficiently and considering the uncertainty in the ADNs
simultaneously. More specifically, one of the application scenarios
is the steady-state analysis of the transmission grid, such as the
probabilistic load flow (PLF) calculation. A distinct advantage of
PEMM is that it can accelerate the PLF calculation on the
transmission grid by getting rid of using the detailed model of
ADN. Another advantage of PEMM is that it can be conducted by
DSOs independently, eliminating the need for sharing the
commercially sensitive operation information with TSOs.

The contributions of this paper are summarised as follows:

(i) A PEMM is proposed to obtain an equivalent model considering
the probabilistic features pertaining to RESs for ADNs. The
uncertain property of RESs is aggregated to the boundary bus using
the properties of the cumulant and the power transfer matrices
derived from the nodal voltage equations. The PEMM only relies
on the information of ADNs and thus the equivalent model can be
developed by the DSOs independently. Under this context, the
PEMM can facilitate the coordination between DSOs and TSOs
and improve the reliability of the transmission systems by
providing a solution for TSOs to consider the uncertainty from
ADNs without compromising the efficiency of analysis.
(ii) The formulation of PEMM is extended to incorporate the
correlated power injections through an orthogonal transformation,
which can extend the scope of PEMMs to the equivalent modelling
of ADNs with the correlated RESs integrated.
(iii) The performance of the proposed PEMM is demonstrated by
comparing it with the loss ratio (LR) method on two different test
systems. The case studies verify that using the PEMM can
accelerate the analysis and calculation toward the transmission
system without simultaneously compromising the accuracy.

The remainder of this paper is organised as follows. Power
injections with uncertainty in ADNs are formulated in Section 2. In
Section 3, the PEMM for ADNs is proposed and extended to
incorporate the correlated power generation of RESs. A sampling
method for generating the correlated samples and the joint
cumulants using the copula function is also described in Section 3.
In Section 4, case studies on two different test systems are
performed to evaluate the accuracy and efficiency of the proposed
PEMM. Finally, conclusions and future work are given in Section
5.

2 Modelling of uncertain power injections in
ADNs
An ADN is characterised by the high penetration of RESs, which
are inherently stochastic because of the environmental conditions.
Moreover, the loads in ADNs are uncertain because of prediction
errors and their inherent stochastic nature. In this section, the

uncertainty of the power injection of ADN is described. The model
of PVs is presented first, followed by the model for wind power
and load.

2.1 Model of PVs

An ADN is typically equipped with PV plants to supply usable
solar power. The beta distribution is used to model the uncertainty
of solar irradiance [15]:

f r(r) =

Γ(α + β)
Γ(α) + Γ(β)

r
rmax

α − 1
1 − r

rmax

β − 1

0 ≤ r ≤ rmax, α ≥ 0, β ≥ 0
0 r ≤ 0 or r ≥ rmax

, (1)

where r and rmax are the solar irradiance and maximum solar
irradiance, respectively; α and β are the function parameters and Γ
represents the Γ function.

Accordingly, the probability density function (PDF) of the
active power output of a PV plant is formulated as

f pv(Ppv) = Γ(α + β)
Γ(α) + Γ(β)

Ppv

Ppv,max

α − 1
1 − Ppv

Ppv,max

β − 1
, (2)

Ppv,max is the maximum active power output of the PV plant:

Ppv,max = Aηpvrmax, (3)

where ηpv is the comprehensive conversion efficiency of the PV
plant and A is the area of the PV cells within a PV plant.

2.2 Model of wind power

The Weibull distribution is commonly used to describe the
probabilistic nature of wind speeds [12]:

f w(x) =
k
λ

x
λ

k − 1
exp − x

λ
k

x ≥ 0

0 x ≤ 0
, (4)

where x is the wind speed, k is the shape parameter of the
distribution and λ is the scale parameter of the distribution.

The relationship between the wind speed and the output power
of a WF is formulated as [12]

Pw(v) =
0, v ≤ vci, v ≥ vco

PN, vN ≤ v ≤ vco

g(v), vci ≤ v ≤ vN

, (5)

where vci, vco and vN are the cut-in, cut-out and nominal wind speed,
respectively; g(v) is a function that describes the relationship
between the power output and the wind speed in the interval of
wind speed [vci, vN] and can be expressed as

g(v) = 1
2πρCp(λ, β)R2v3, (6)

in which ρ is the air density (typically 1.25 km/m3), β is the pitch
angle (in degrees), R is the blade radius (in metres) and Cp(λ, β) is
the wind-turbine power coefficient.

Supposing a WF adopts the control strategy of constant power
factor, the reactive power generated by a WF can be calculated as

Qw = Pw 1 − cos2φ/cos φ, (7)

where cosφ is the power factor of the WF.
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2.3 Load

Considering the time-varying and uncertain nature of loads, the
normal distribution is commonly used to describe the active power
load uncertainty [15, 16]:

f l(Pl) = exp −
(Pl − μpl)

2

2σpl
2 / 2πσpl, (8)

where f (Pl) is the PDF of the active power load, and μpl and σpl are
the mean and standard derivation of the active power load,
respectively.

The PDF of the reactive power load can be similarly derived.

3 Probabilistic equivalent modelling of ADNs
Generally, the transmission network and distribution networks are
interconnected via a boundary bus, which is the physical
distribution substation. An illustrative example of the conventional
deterministic equivalent technique for the passive distribution
network is depicted in Fig. 1. The assumption behind this
technique is that all components of the distribution system are
deterministic. By contrast, the PEMM proposed in this paper
incorporates the uncertainties caused by the RESs and loads.

As shown in Fig. 2, by replacing the ADN with the stochastic
equivalent boundary power injection and the equivalent boundary
shunt branch, the primary goal of the PEMM is to accelerate the
analysis of the transmission system. The stochastic equivalent
boundary power injection can represent the uncertain power
injections and the power loss in the ADNs. The equivalent
boundary shunt branch can represent the shunt components in the
ADNs. The equivalent model derived from the PEMM can retain
the consistency of the load flow as well as that of the probabilistic
nature in ADNs before and after equivalence.

In this section, we first introduce the derivation of power
transfer matrices, which are the basic components of the proposed

PEMM. Subsequently, the proposed PEMM is extended to
incorporate the correlation. The copula function, which is utilised
to characterise the correlation between the RES and the inverse
transform sampling-based method is used to derive the joint
cumulants of power injections.

3.1 Power transfer matrices

The nodal voltage equations of the CTDS can be expressed in
matrix form:

YEE YEB

YBE YBB YBI

YIB YII

VE
˙

VB
˙

VI
˙

=
IĖ

IḂ

II
˙

, (9)

where Y is the bus admittance matrix, V̇ is the nodal voltage
vector, İ is the nodal current injection vector and the subscripts E,
B, I denote the elements of the matrix and the vector corresponding
to the buses of the ADN, the boundary buses and the buses of the
transmission network, respectively.

By performing Gaussian elimination on (9) to eliminate VE
˙  and

transforming the nodal current injection into the nodal power
injection, the nodal voltage equations of the boundary buses in the
equivalent network can be expressed as

(YBB − YBEYEE
−1YEB)VB

˙ + YBIVI
˙ =

(diag[VB
˙ ]−1)∗SḂ

∗ − YBEYEE
−1(diag[VE

˙ ]−1)∗SE
˙ ∗,

(10)

where Ṡ is the nodal power injection, ()∗ denotes the conjugate
operator and diag[ ] is the diagonal operator.

Derived from the right side of (10), the equivalent boundary
power injection can be formulated as

ΔSḂ = − diag[VB
˙ ]YBEYEE

−1diag[VE
˙ ]−1SE

˙ . (11)

ΔSḂ is determined jointly by YBEYEE
−1, VB

˙ , VE
˙  and SE

˙  at a specific
operating point. Assuming that YBEYEE

−1, VB
˙  and VE

˙  are constants at a
basic operating point, the equivalent boundary power injections are
approximately linear to the power injections in ADNs in decoupled
forms:

ΔPB = EPPE + EQQE, (12)

ΔQB = − EQPE + EPQE, (13)

where P and Q are the active and reactive parts of the complex
power injections, respectively. Equations (12) and (13) show the
power transfer characteristics in the ADNs. EP and EQ are the
power transfer matrices, which can be calculated by

EP = CB1diag( VE )−2VE,Re + CB2diag( VE )−2VE,Im,
EQ = CB1diag( VE )−2VE,Im − CB2diag( VE )−2VE,Re,

(14)

CB1 = diag[VB,Re](YBEYEE
−1)Re − diag[VB,Im](YBEYEE

−1)Im,
CB2 = diag[VB,Im](YBEYEE

−1)Re + diag[VB,Re](YBEYEE
−1)Im,

(15)

in which ( ∗ )Re and ( ∗ )Im represent the real and imaginary part of
( ∗ ), respectively, and ∗  denotes the magnitude of a complex
number.

With (10), the certain equivalent boundary power injection and
the equivalent boundary shunt branch in Fig. 2 can be calculated,
thereby building the Ward-type equivalent models for ADNs.
Although the Ward-type equivalent models can guarantee the
consistency of the load flow before and after the equivalence, they
are not able to take the uncertainty of ADNs into consideration.
Hence, they are not suitable for the equivalent modelling of ADNs
with uncertain power injections.

Equation (10) is one kind of the Ward-type equivalence. The
Ward-type equivalence could cause errors when VE

˙  and VB
˙  deviate

Fig. 1  Conventional deterministic equivalent technique
 

Fig. 2  Illustrative example of the PEMM
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from the basic operating point. However, these voltage-related
errors are not significant in this study. There are mainly two
reasons. First, VE

˙  and VB
˙  are highly correlated in the ADN. For

example, the increase of power output of the RES units will lead to
the increase of the magnitude and phase angle of both VE

˙  and VB
˙ ,

and vice versa. From the (11), we can observe that this correlation
will offset some errors caused by the variance of voltage because
VE
˙  and VB

˙  are in the numerator and the denominator part of the
equation, respectively. Second, using the voltage regulation devices
such as static var compensators and on-load taps, ADN can control
the voltage within a certain range (for example, 0.85–1.1 p.u.) for
secure and economic operation. Compared with the SE

˙  in (11), VE
˙

and VB
˙  have less impact on the equivalent boundary power

injections because they have a smaller range of variation. The
further empirical results are presented in Section 4.1.5, which
investigates and evaluates the this kind of voltage-related error.

3.2 Probabilistic equivalence using cumulant

In this paper, a PEMM using the cumulant is proposed to
simultaneously ensure the consistency of both the load flow and
the probabilistic characteristics. Readers are referred to [17] for the
basics of cumulants.

Let γPgE
(v)  and γPlE

(v)  be the vth cumulants of the nodal active power
generation and the nodal active power load in the ADN,
respectively. The definitions of γQgE

(v)  and γQlE
(v)  are similar. Supposing

that the nodal power generation and the nodal load are
independent, the vth cumulants of active power injection γPE

(v) and
the vth cumulants of reactive power injection γQE

(v)  can be obtained
using the additivity of cumulants:

γPE
(v) = γPgE

(v) + γPlE
(v) , (16)

γQE
(v) = γQgE

(v) + γQlE
(v) . (17)

After we obtain γPE
(v) and γQE

(v) , we can deduce the expressions for
the cumulants of the equivalent boundary power injections. For
clarity, we first suppose that the nodal power injections in the ADN
are uncorrelated. Based on (12) and (13) in Section 3.1, by means
of the properties of homogeneity and the additivity of cumulants
[17], the vth cumulants of the equivalent boundary power
injections can be deduced as

γΔPB
(v) = EP

∘ vγPE
(v) + EQ

∘ vγQE
(v) , (18)

γΔQB
(v) = − EQ

∘ vγPE
(v) + EP

∘ vγQE
(v) , (19)

where [ ∗ ] ∘ v is the Hadamard power operator.
Note that the derivation presented above takes the advantage of

the additivity and homogeneity of the cumulant and the additivity
under the condition that the stochastic variables are independent.

PEMM based on (18) and (19) has the following characteristics:
(i) the application of cumulant avoids the complicated convolution
operation between random variables and greatly simplifies the
work of equivalence; (ii) (18) and (19) are presented in a PQ
decoupling manner, which makes the incorporation of the active
and reactive power injections in ADN flexible and independent;
(iii) the derivation of the PEMM utilised the information of the
network topology and power loss of ADN. Hence, it can consider
the heterogeneity of the nodal power injections in the ADN instead
of treating them without distinction, which improves the accuracy
of the equivalent model and (iv) PEMM only relies on the
operation information of ADNs.

γΔPB
(v)  and γΔQB

(v)  aggregate the uncertainty of power loss and
power injections in ADNs, which contain the probabilistic
information of ADNs. The moments of the equivalent boundary
power injections can be obtained using the relationship between
cumulant and moment [17], which can facilitate further analysis of

transmission networks by avoiding the complication of ADN
models. Compared with the original CTDS, the equivalent network
obtained from the PEMM is less complicated but still preserves the
consistency of the probabilistic characteristics and the consistency
of the load flow.

3.3 Consideration of correlations

The PEMM derived in Section 3.2 does not consider the
correlations of RESs in the ADN. This section uses an orthogonal
transformation to incorporate the correlations into the PEMM [18].
For convenience, we focus on discussing the correlations of active
power generation.

Let P be the correlated active power injection vector in the
ADN:

P = (p1, p2, …, pm), (20)

with the correlation coefficient matrix Cp.
Cp is usually symmetric and also positive definite. Thus,

Cholesky decomposition can be used to decompose Cp [18]:

Cp = GGT . (21)

Then, the correlated active power injection P can be
transformed into uncorrelated random variable P′:

P′ = G−1P . (22)

Conversely, the corresponding inverse orthogonal
transformation can be expressed as

P = GP′ . (23)

As formulated in (23), we can express the correlated vth
cumulants of the nodal active power injection in the ADN as the
weighted linear combination of independent vth cumulants using
the inverse orthogonal transformation:

γPE, j
(v) = ∑

r = 1

j
gjr

v γPE, j′
(v) , j = 1, 2, …, m, (24)

where γPE, j′
(v)  is the uncorrelated cumulant of active power injection

in bus j of the ADN, m is the number of buses of the ADN, and gjr
v

is the jth row and rth column element of the matrix Gv.
By performing an orthogonal transformation, the correlated

active power injections P can be transformed into uncorrelated
random variables. Then, substituting (24) into (18) and (19) yields

γΔPB
(v) = EP

~ ∘ vγPE′
(v) + EQ

∘ vγQE
(v) , (25)

γΔQB
(v) = − EQ

~ ∘ vγPE′
(v) + EP

∘ vγQE
(v) . (26)

The elements of EP
~ ∘ v and EQ

~ ∘ v can be calculated by

e~p, ir
v = ∑

k = r

m
ep, ik

v gkr
v , r = 1, 2, …, m, (27)

e~q, ir
v = ∑

k = r

m
eq, ik

v gkr
v , r = 1, 2, …, m, (28)

where ep, ik
v  is the element of EP

∘ v in the ith row and kth column, eq, ik
v

is the element of EQ
∘ v in the ith row and kth column, i is the index

of the boundary buses and r is the index of the buses of the ADN.
With (25) and (26), the PEMM can consider the correlations

among the active power injections in the ADN. A similar
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procedure can be used to consider correlated reactive power
injections.

3.4 The joint cumulant of the power injection in ADNs

When applying the PEMM for ADNs, the first step is to obtain the
cumulants of the power injections in the ADN. In the case that
multiple PV plants or WFs are integrated into an ADN, the
probabilistic model for renewable power generation is actually a
multivariate distribution. When the outputs of WFs and PV plants
are correlated, the γPpv, E

(v) , γPwind, E
(v) , γQpv, E

(v)  and γQwind, E
(v)  are supposed to

be joint cumulants. However, it is intractable to obtain the joint
probability distribution function for this multivariate distribution,
and therefore, it is difficult to obtain the joint cumulants directly
[12].

In this section, we develop a sampling-based method to obtain
the joint cumulants for the correlated power injections, which
utilises the copula function to describe the correlation structures.

The copula function can connect multiple univariate
distributions to a multivariate distribution [19]. With marginal
probability distributions for each random power injection and the
correlation information, such as the Pearson correlation coefficient
ρ, the copula function can be used to connect these dispersive
marginal probability distributions and to generate the samples of
the correlated random variables.

The Sklar theorem states that any multivariate joint distribution
F(x1, x2, …, xN) can be expressed by the combination of N
univariate marginal cumulative distribution functions (CDFs)
F1(x1), F2(x2), …, FN(xN) and a copula function C(u1, u2, …, uN)
defined in the N-dimensional space [0, 1]N:

F(x1, x2, …, xN) = C(F1(x1), F2(x2), …, FN(xN)) . (29)

The Gaussian copula function is used to obtain the correlated
samples of power generation and loads in the ADN. The CDF of
the Gaussian copula function can be expressed as

C(u1, u2, …, uN; ρ) = φρ(φ−1(u1), φ−1(u2), …, φ−1(uN)), (30)

where ρ is the correlation coefficient matrix; φρ is the CDF of the
standard multivariate Gaussian distribution with correlation
coefficient matrix ρ and φ−1 is the inverse CDF of standard
univariate Gaussian distribution.

It is noted that this paper aims to develop the equivalent method
for ADN, in which the correlated random power injections are
considered. The proposed method is not limited to a specific
distribution type, and it can be applied to the raw RES and load
samples as well. Fig. 3 presents the flowchart of the derivation of
the Gaussian copula function of the data. The details are given
below.

1. Input the data of RES or load. It could be the raw data samples
or the marginal CDFs of data from the parametric estimates.

2. If the input data is the raw dataset, go to step 4 and if the input
data is the marginal CDF, go to step 3.

3. If the linear correlation parameter among the different RESs or
the different loads is available, go to step 5; otherwise go to
step 6.

4. Use the non-parametric techniques such as kernel density
estimation (KDE) on raw data to obtain the marginal CDF of
the data.

5. Construct the Gaussian copula directly.
6. Use inference functions for margins [20] to fit the copula

function and Obtain the linear correlation parameter for the
Gaussian copula.

7. Use canonical maximum likelihood [21] to fit the copula
function and obtain the linear correlation parameter for the
Gaussian copula.

8. Output the Gaussian copula φρ of the input data and the
marginal CDFs of input data.

After obtaining the marginal CDF of the data and their
corresponding copula functions, the steps in obtaining the joint
cumulants of the power injections are as follows: 

(i) Obtain the CDF of the Gaussian copula function φρ.
(ii) Using the Gibbs sampling technique [22], obtain the samples of
the Gaussian copula distribution CN × M = [c1, c2, …, cM], where N is
the number of samples and M is the dimension of the variable.
(iii) Obtain the correlated wind speed or solar irradiation samples
ZN × M = [z1, z2, …, zM] with the CN × M and the marginal CDF of
wind speed or solar irradiation F j, as illustrated in Fig. 4

zi = Fi
−1(ci), i = 1, 2, …, M . (31)

Obtain the correlated load samples using the inverse transform
sampling as well.

Fig. 3  Flowchart of the derivation of the copula function
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(iv) Obtain the correlated renewable power generation samples
x ⋅ i = [x1i, x2i, …, xNi]T using (2) and (5).
(v) Obtain the joint moments of the renewable power generation
and loads based on the correlated samples x ⋅ i = [x1i, x2i, …, xNi]T:

av, xi = ∑
j = 1

N
(xji)v/N, v = 1, 2, … . (32)

(vi) Calculate the joint cumulants of the renewable power
generations and loads using the relationship between moments and
cumulants [17].

3.5 Flowchart

Fig. 5 gives a flowchart of the PEMM for establishing the
probabilistic equivalent model of the ADN. The proposed
equivalent method only needs the system data of the distribution
systems, which means that it can be developed by the DSOs
independently. This characteristic gets rid of the need for the DSOs
to share their detailed models and operation information with the
TSOs, thereby protecting the commercially sensitive information
of DSOs. Thus, the proposed method is useful for integrated
transmission and distribution analysis. As a coordination tool for
DSOs and TSOs, the proposed method can improve the reliability
and efficiency of the transmission systems by enabling the TSOs to
take the uncertainty of the loads and renewable generation in the
distribution system into account in an accurate way.

4 Case studies
To illustrate the validity of the proposed probabilistic equivalent
method, two test systems on different scales are considered. One of
the systems consists of a 14-bus transmission system and a 33-bus
radial distribution system, and the other is a larger scale power
grid, which is composed of a 118-bus transmission system and
three radial distribution systems of different scale. The
effectiveness of the probabilistic equivalent method is
demonstrated by comparison with the original model in terms of
efficiency and accuracy.

All tests are performed on a computer with Core i5 processor
running at 2.6 GHz and 8 GB of RAM. The code is implemented
on the platform of MATLAB R2019b.

4.1 Case I: CTDS of a 14-bus transmission system and a 33-
bus radial distribution system

In Case I, the system configuration is detailed in Section 4.1.1. The
relevant PLF calculation embedded with PEMM is introduced in
Section 4.1.2. Section 4.1.3 investigates and evaluates the accuracy
of the probabilistic equivalent model obtained from PEMM
through the comparison with the LR method. Section 4.1.4
discusses the impact of the reactive power output of RES units on
the equivalent model. The computational efficiency by using the
probabilistic equivalent model is presented in Section 4.1.5.

4.1.1 System configuration: To demonstrate the effectiveness of
the proposed method, case studies are performed on a CTDS
system. The transmission side of this CTDS is the modified IEEE
14-bus system shown in Fig. 6 and the parameters of the system are
detailed in [23]. The distribution side of the CTDS is based on the
modified IEEE 33-bus system shown in Fig. 7, and the parameters
of the system are detailed in [23]. The voltage base of the
distribution network is 12.66 kV. The ADN is connected to the
transmission system through bus 13 in the transmission system,
which is regarded as the boundary bus. The reactance of the
distribution transformers is 0.05 p.u. on the base of 100 MVA.

The ADN incorporates six WFs and four PV plants, and they
are located on buses 6, 12, 20, 24 and 29, respectively, as shown in
Fig. 7. The vci, vco and vN of the wind turbines in these six WFs are
3, 14 and 25 m/s, respectively. The power factor of the WFs and
PV plants are set to 1 for simplicity. It should be pointed out that
the setting of this power factor does not affect the applicability of
the method in this paper and the relevant discussion is presented in

Section 4.1.4. The scale parameter and the shape parameter of the
wind speed distribution are set to 2.8 and 5.14, respectively.
Concerning PV plants, the parameters of the distribution of the
active power output are 3.3 and 3.1. In this case, the penetration
level of the RES is 11.15%. To emphasise the impact of the
uncertainty of RES and loads in the ADN on the transmission grid,
no RES plants are involved in the transmission grid, which means

Fig. 4  Example of inverse transform sampling
 

Fig. 5  PEMM for ADNs
 

Fig. 6  Modified IEEE 14-bus power system with integrated ADN
 

Fig. 7  Modified IEEE 33-bus distribution network
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that the only uncertain sources in the transmission grid are from the
ADNs.

The correlation between wind speeds among the six WFs is
considered, as is the correlation between solar irradiances among
the four PV plants. The correlation coefficients for the wind speeds
or solar irradiances within the same node are relatively high. The
correlation coefficient matrices for the wind speeds in the WFs and
the solar irradiances at the four PV plants are as follows:

ρwind =

1 0.9 0.6 0.6 0.4 0.4
0.9 1 0.6 0.6 0.4 0.4
0.6 0.6 1 0.9 0.5 0.5
0.6 0.6 0.9 1 0.5 0.5
0.4 0.4 0.5 0.5 1 0.9
0.4 0.4 0.5 0.5 0.9 1

,

ρPV =

1 0.9 0.5 0.5
0.9 1 0.5 0.5
0.5 0.5 1 0.9
0.5 0.5 0.9 1

.

In this case, for the uncertain loads in the ADN, their expected
values are set to their deterministic value and the standard
deviations are set to 10% of the expected values. For simplicity, the
correlation between loads of different buses is not considered in
this case. Because the normal distribution is used to describe the
uncertainty of the loads, their cumulants can be calculated as
follows:

γload
(1) = μ, γload

(2) = σ2, γload
(v) = 0, for v ≥ 3 (33)

4.1.2 PLF calculation embedded with PEMM: PLF is an
essential tool for analysing the uncertain states of power systems.
The equivalent models derived from PEMM are supposed to be
integrated into the PLF algorithms to alleviate the computational
burden of these algorithms. The coordination between the PEMM
and the two types of well-known PLF algorithms, and the
cumulant-based PLF (CPLF) and Monte Carlo simulation-based
PLF (MCS-PLF), are discussed. The performance of the proposed
PEMM will be evaluated using CPLF and MCS-PLF in the
following section.

With the cumulants of the equivalent boundary power injections
obtained from the PEMM, the probabilistic equivalent model can
be readily integrated into the CPLF [24].

The equivalent boundary power injections can be regarded as an
equivalent generator representing the ADN. Then, CPLF can be
performed on the probabilistic equivalent model. The procedure is
detailed as follows [24]:

(i) Obtain the cumulants of the equivalent boundary power
injections using the PEMM.
(ii) Compute the cumulants of the power injections of other buses
except for the boundary bus according to the given probabilistic
distribution.
(iii) Compute the cumulants of the state variables, including the
voltage and branch flow according to the cumulants of the power
injections and the linearised power flow equation.

(iv) Construct the CDF and PDF of the state variables using Gram–
Charlier expansion [24], maximum entropy method [25] or another
method.

MCS-PLF relies on the samples of variables and the
deterministic load flow. The procedure for MCS-PLF using the
probabilistic equivalent model is developed as follows:

(i) Compute the cumulants of the equivalent boundary power
injection using the PEMM.
(ii) Calculate the Gram–Charlier expansion coefficients of the
equivalent boundary power injection using the corresponding
cumulants and then obtain the CDF of the equivalent boundary
power injection Feq.
(iii) Generate samples from the uniform distribution
UM = [u1, u2, …, uM] and obtain samples of the equivalent boundary
power injection using the inverse CDF:
ei = Feq

−(1(ui) i = 1, 2, …, M as shown in Fig. 4.
(iv) Run the deterministic load flow based on the samples of the
equivalent boundary power injection.
(v) Obtain the statistics of the state variables according to the
results of the deterministic load flow.

4.1.3 Evaluation of PEMM: To evaluate the performance of the
proposed PEMM, an alternative equivalent modelling method,
called the LR method, is presented. The basic idea of the LR is to
construct the equivalent boundary power injection by simply
aggregating the RES generations, the loads and the power loss in
the ADNs with an estimated LR. This method is based on the
sample set of the ADN, where each sample contains the data for
the RES generations and the loads. The LR is an intuitively
straightforward way to construct the equivalent model for the
distribution network and it is one kind of PQ equivalence [26].
This paper conducts a series of comparative experiments to
validate the proposed PEMM in comparison with LR. The detailed
process of the LR is as follows:

(i) Obtain the nodal power injections Pinj,0 and Qinj,0, the active
power loss Ploss,0 and the reactive power loss Qloss,0 in the ADN
under the basic operating point, which is derived from the expected
values of the sample set.
(ii) Compute the active and reactive power LRs, respectively

ΦP = Ploss, 0

Pinj, 0
, ΦQ = Qloss, 0

Qinj, 0
. (34)

(iii) For the ith sample in the sample set, compute the equivalent
boundary power injections:

Peq, i = Pinj, i ∗ (1 + ΦP), Qeq, i = Qinj, i ∗ (1 + ΦQ), (35)
(iv) Compute the moments of the equivalent boundary power
injections based on the sample set.
(v) Compute the cumulants using the relationship between the
moments and the cumulants and obtain the probabilistic model of
the equivalent boundary power injections.

Applying the PEMM and LR to the test system, probabilistic
equivalent models with the uncertain boundary power injection at
bus 13 can be obtained and their cumulants are presented in Table
1. Moreover, for PEMM, since few shunt components exist in this
ADN, the equivalent shunt conductance and shunt susceptance at
bus 13 are −3.55 × 10−13 and 3.55 × 10−13 p.u., respectively, which
can be derived from YBB − YBEYEE

−1YEB in (10).
To evaluate the accuracy of the obtained probabilistic

equivalent model, PLFs are performed on the original and the
equivalent models, respectively. The results of the MCS-PLF of the
original system are regarded as the benchmarks and the number of
MCS is set to 5000 in this case.

Figs. 8–10 show the PDF curves of selected state variables,
which are derived from different PLF algorithms and models. The
legends of these figures are summarised in Table 2. Notably, the
branches in Figs. 8 and 9 are directly connected to the boundary

Table 1 Cumulants of the equivalent boundary power
injections at bus 13

γPeq
1 γPeq

2 γPeq
3 γPeq

4

PEMM 3.47 × 10−2 1.79 × 10−6 −2.78 × 10−11 −3.15 × 10−13

LR 3.47 × 10−2 0.78 × 10−6 0.65 × 10−11 0.28 × 10−13

γQeq
1 γQeq

2 γQeq
3 γQeq

4

PEMM 2.42 × 10−2 5.86 × 10−7 −4.41 × 10−21 −3.29 × 10−26

LR 2.42 × 10−2 4.54 × 10−7 −1.08 × 10−11 1.39 × 10−14
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bus 13, which means that they are more likely to be affected by the
accuracy of the equivalent model.

Compared with the PLF-lr curves, the CPLF-eq and MCS-PLF-
eq curves are close to the MCSM curves. The equivalent models
derived from PEMM are superior to those derived from LR in
terms of accuracy. Both the result of MCSM and CPLF-or are
based on the original model. The gap between MCSM and CPLF-
or demonstrates there are errors in the result of CPLF because of
the assumption and approximation made in the CPLF algorithm.
The only difference between the CPLF-or and the CPLF-eq is the
model. Hence, the similar results of the CPLF-or and the CPLF-eq
demonstrate the equivalent model derived from PEMM is pretty
accurate in the context of the CPLF algorithm. The difference
between the MCS-PLF-eq and the MCSM indicates that the
performance of the equivalent model in the context of MCS-PLF is
not as good as that in the context of CPLF. The reason is that the
derivation of PEMM is based on the property of the cumulant,

which relies on some assumptions and simplification. Even so, the
curves of the equivalent model, such as CPLF-eq and MCS-PLF-
eq, are still close to the curves of the MCSM, which can
substantiate the effectiveness of the proposed PEMM.

Fig. 11 shows the average root mean square (ARMS) errors of
all active power flows, reactive power flows and PQ bus voltage
magnitudes of the transmission system using the CDF of the
MCSM results as a reference. The ARMS error is defined as

ARMS =
∑i = 1

N (Ct, i − CMCSM, i)
N , (36)

Fig. 8  PDF curves of the active power flow of the branches connected to
boundary buses in IEEE 14-bus system

 

Fig. 9  PDF curves of the reactive power flow of the branches connected to
boundary buses in IEEE 14-bus system

 

Fig. 10  PDF curves of the voltage magnitude of bus 13
 

Table 2 Legend in figures
Legend PLF algorithms Model
MCSM MCS-PLF original model
CPLF-or CPLF original model
PLF-lr CPLF equivalent model from LR
CPLF-eq CPLF equivalent model from PEMM
MCS-PLF-eq MCS-PLF equivalent model from PEMM
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where CMCSM, i is the ith value of the CDF of the MCSM result, Ct, i
is the corresponding ith value of the CDF of the other results, t is
the index for the other results and N is the number of points. In this
case, N is set to 10,000. Notably, the 14th branch (branch (7,8) in
the 14-bus system) in Fig. 11 is not presented because there is no
active power flow on this branch. These figures show that the
equivalent model obtained from the PEMM is more accurate than
that obtained from the LR. For example, the average ARMS error
of CPLF-eq of active power flow is 0.0012, which is smaller than
that of PLF-lr by 69.23%. The maximum ARMS error of CPLF-eq
of active power flow is 0.0042, which is smaller than that of PLF-lr
by 64.71%. The minor gaps between the CPLF-or curves and the
CPLF-eq curves confirm that the equivalent model can depict the
probabilistic characteristics of the ADN relatively well.

The LR method aggregates all the power injections in ADNs
first and builds the equivalent model using two constant power LRs
only. By contrast, the PEMM transfer the uncertainty of the RES
and loads to the boundary considering the network topology and
parameters of the ADN. The PEMM considers the heterogeneity of
the nodal power injections in the ADN instead of treating them
without distinction. Hence, the probabilistic equivalent models
obtained from the PEMM are more accurate. Moreover, as shown
in Fig. 12, the power LRs vary in a wide range in the ADN because
the penetration of large-scale renewables makes the directions of
power flow complicated. This characteristic is also a reason for the
deterioration of the accuracy of the LR method. 

4.1.4 Impact of the reactive power output of RES: To evaluate
the influences of the reactive power output of the renewable energy
(RE) units upon the equivalent model, three probabilistic
equivalent models based on the test system of Case I under three
scenarios are constructed. In these three scenarios, the power factor
of RE units is set as 0.98 (lagging), 0.98 (leading) and 1.00,
respectively. The lagging scenario represents that the RE units
consume reactive power, while the leading scenario represents that
the RE units generate reactive power. The cumulants of the
equivalent boundary power injections at the boundary bus of these
three scenarios are listed in Table 3. The reactive power output of
the RES units has few influences on the equivalent boundary active
power injections. However, the reactive power output of the RE
units leads to the variation of the equivalent boundary reactive
power injections. First, from the data of the first-order cumulants,
the lagging power factor will increase the reactive power
consumption in the distribution system, whereas the leading power
factor will decrease the reactive power consumption. Second, from
the data of the second-order cumulants, both the lagging power
factor and leading power factor lead to the higher variance of the
equivalent boundary reactive power injections compared with the
unit power factor. This is because the reactive power of RES units
is stochastic and the involvement of these stochastic variables will
increase the uncertain degree of the reactive power part of the
probabilistic equivalent models. The similar findings can be
observed in the higher-order cumulants. With the higher variance
of the equivalent boundary reactive power injections, it is expected
that the voltage magnitude and reactive power branch flow of the
transmission system will fluctuate in a larger range.

4.1.5 Analysis of voltage-related error: PEMM developed in
(12) and (13) utilises the VE

˙  and VB
˙  at basic operating point to

derive EP and EQ, which are the decoupled power transfer matrices.
This section investigates and appraises the voltage-related error
discussed in Section 3.1.

In this case study, we assume the voltage error is caused by the
variable consumption of the stochastic loads in the ADN. There are
two reasons for this setting. One is that the sum of the expected
consumption of the loads outweighs the output of the RES in our
case. Hence, the fluctuation of voltage caused by the loads is more
significant. The other reason is that in Case I, the loads are
assumed to follow the normal distribution, for which it is easier to
quantify the dispersion of the random variables. It is noted that the
findings and comments derived from this case study can be generalised to the voltage errors caused by the RES as long as the

total output of the RES does not exceed the amounts of the loads.

Fig. 11  ARMS errors of active power flow, reactive power flow and
voltage magnitude in the IEEE 14-bus system

 

Fig. 12  Box plot of the power LR of the ADN in Case I
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Four equivalent models are developed using four sets of VE
˙  and

VB
˙  at different operating points. The first model, denoted as M1, is

derived at the basic operating point, in which the actual
consumption of the loads is exactly their expected value. The
second model, denoted as M2, is derived at the random operating
point, in which the actual consumption of the loads is generated by
randomly sampling from their distributions. The other two models,
denoted as M3 and M4, respectively, are derived at the deviated
operating points, in which the actual consumption of the loads is
assumed to be one standard deviation higher or lower than the
expected value, respectively. The scenarios of M3 and M4 are
relatively extreme because all the loads deviate in the same
direction concurrently and thus no up/down offsets exist. The main
differences among these four models are the value of the power
transfer matrices EP and EQ.

Table 4 shows the probabilistic information of these four
equivalent models. Even though the value of VE

˙  and VB
˙  will impact

the equivalent models, the magnitude of such impacts is
insignificant. To be specific, γPeq

2  and γQeq
2 , which can also be

interpreted as the variance of the equivalent boundary bus power
injections, of these four models are extremely close. Besides, the
higher-order cumulants, e.g. γPeq

3  and γPeq
4 , of these four models are

in good agreement with each other. In terms of γQeq
3  and γQeq

4 , though
the discrepancy exists, the impact of this discrepancy on the
performance of the equivalent models is negligible because their
orders of magnitude lie in the range of [10−20, 10−22] and
[10−25, 10−27], which is relatively tiny compared to the orders of
magnitude of γQeq

2 . Thus, the proposed PEMM is robust to the
voltage-related errors we discuss in Section 3.1 based on the
empirical results.

To account for the satisfactory performance of PEMM on the
voltage-related errors, we calculate the magnitude and phase angle
of VB

˙  and VE
˙ . Considering that VB

˙  has one element and VE
˙  has 33

elements in Case I, we compare the VB
˙  to the average of VE

˙ , which
is listed in Table 5, where θB/θE

ave and VB / VE
ave  are the ratio of

the voltage phase angle and voltage magnitude of boundary bus to
the average voltage phase angle and magnitude of external bus,
respectively. It is shown that the ratios of the voltage of boundary
bus to external buses is quite similar, which indicates the positive
correlation between VE

˙  and VB
˙ . This correlation will offset some

voltage-related errors caused by the variance of voltage because VE
˙

and VB
˙  are in the numerator and the denominator part of (11),

respectively. That is a vital reason for the satisfactory performance
of PEMM on the voltage-related errors.

4.1.6 Computational efficiency: The computational efficiency of
the algorithms in Section 4.1.3 is presented in Table 6, where tm is
the time consumed in the equivalent modelling, tc is the time
consumed in the PLF calculation and nvar is the number of unknown
state variables in the system. The data in Table 6 is obtained by
averaging ten independent runs. Herein the unknown state
variables include the voltage magnitude and phase angle of PQ
nodes, the phase angle of PV nodes, and the active and reactive
power flow of all branches in the transmission system. The number
of Monte Carlo simulation is set to 5000 in this case.

As for the equivalent modelling, the PEMM consumes 0.054 s,
which is faster than the LR method by 66.25%. Thus, the PEMM is
computationally efficient for PLF. In terms of using the equivalent
model to perform the PLF algorithms on the transmission system, it
can save about 81.89% of the time for the CPLF calculation and
about 41.45% of the time for the MCS-PLF calculation. The
improvement in the efficiency is partly because nvar in the
equivalent model is less than that in the original model by 68.04%.

It is worth mentioning that the PEMM only needs the operating
data of the distribution network, so it can be completed
independently by the DSOs. In practical applications, to facilitate
the secure and economic operation of the transmission system, the
DSOs only need to share the equivalent model of the system to the
TSOs, rather than the detailed original model. Based on the results
of the evaluation of the accuracy of PEMM and the computational
efficiency, using the PEMM, the efficiency of the probabilistic
analysis toward the transmission network can be substantially
enhanced without compromising accuracy. Hence, in the context of
considering the uncertain RES integrated into the ADN, the PEMM
can play an important role in the coordination of the TSOs and
DSOs while enabling the independent operation of the distribution
network.

4.2 Case II: CTDS of a 118-bus transmission system and
three radial distribution systems

To further investigate the performance of the proposed PEMM, a
larger CTDS is simulated in this experiment. The system
configuration is detailed in Section 4.2.1. The accuracy of the
equivalent model is evaluated in Section 4.2.2. Section 4.2.3 shows
computational efficiency.

4.2.1 System configuration: The test system consists of an IEEE
118-bus transmission system and three different radial distribution
systems, which have 141 buses, 85 buses and 69 buses,
respectively. As shown in Fig. 13, these three radial distribution
systems are connected to the transmission system through buses
93, 102 and 108, respectively.

Table 3 Cumulants under different power factors
Power factor γPeq

1  / 10−2 γPeq
2  / 10−6 γPeq

3  / 10−11 γPeq
4  / 10−13

0.98 (lagging) −3.47 1.79 −2.78 −3.16
0.98 (leading) −3.47 1.79 −2.78 −3.15
1.00 −3.47 1.79 −2.78 −3.15
power factor γQeq

1  / 10−2 γQeq
2  / 10−7 γQeq

3  /10−13 γQeq
4  / 10−16

0.98 (lagging) −2.51 6.29 2.33 −5.37
0.98 (leading) −2.34 6.28 −2.32 −5.35
1.00 −2.42 5.86 −4.41 × 10−8 −3.29 × 10−10

 

Table 4 Equivalent models under different operating points
Model γPeq

2  / 10−6 γPeq
3  / 10−11 γPeq

4  / 10−13

M1 1.79 −2.78 −3.15
M2 1.79 −2.79 −3.16
M3 1.80 −2.80 −3.18
M4 1.78 −2.77 −3.13
Model γQeq

2  / 10−7 γQeq
3  / 10−13 γQeq

4  / 10−16

M1 5.86 −4.41 × 10−8 −3.29 × 10−10

M2 5.87 −8.01 × 10−8 −8.19 × 10−10

M3 5.95 −1.34 × 10−7 −1.39 × 10−9

M4 5.78 −8.21 × 10−9 −3.75 × 10−11

 

Table 5 Ratios of the voltage of boundary bus to external
buses

θB/θE
ave VB / VE

ave

M1 0.9958 1.048
M2 0.995 1.0536
M3 0.9966 1.0425
M4 0.9960 1.0478

 

Table 6 Computational efficiency of different models in
Case I

tm, s tc, s nvar

MCSM - 22.843 194
CPLF-or - 0.392 194
PLF-lr 0.160 0.016 62
CPLF-eq 0.054 0.017 62
MCS-PLF-eq 0.054 13.321 62
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The detailed data of the IEEE 118-bus transmission system can
be found in [23]. The parameters of the distribution systems are
summarised in Table 7. The reactance of the distribution
transformers is 0.05 p.u. on the base of 100 MVA.

There are multiple RES units installed in the distribution
system, and the detailed installation sites are presented in Table 8,
where Nw and Npv represent the node sets with WFs installed and
with PV plants installed, respectively. The RES penetration level,
in this case, is set to 12.86%.

In this case, to investigate the applicability of PEMM on the
practical RES data, the uncertainty models of RES are data based,
rather than limited to the specified probability distribution. The
non-parametric KDE technique is used to obtain the CDFs of the
RES data. Later, the copula function is utilised to establish
dependent structures. After establishing the uncertain models based
on the non-parametric KDE technique and the copula function, we

can obtain the relevant statistics such as moments and cumulants of
RES to proceed with the PEMM. The detailed processing
procedure can refer to Section 3.4. We obtain the data on wind
speed and solar irradiation from the website of the National
Renewable Energy Laboratory (NREL) [30].

4.2.2 Evaluation of PEMM: Applying the PEMM and the LR to
construct the equivalent models, respectively, the uncertain
boundary power injection can be obtained and their detailed data is
shown in Table 9. 

The process of accessing the accuracy of the probabilistic
equivalent models in Case II is similar to that in Case I. Likewise,
Figs. 14–16 depict the PDF curves of selected state variables,
including the voltage magnitude of the boundary buses and the
power flows of some of the branches connected to the boundary
buses. Both the CPLF-eq and MCSM-PLF-eq curves are close to
the MCSM and CPLF-or curves while the deviations of the PLF-lr
curves are relatively significant, which verify the superiority of
PEMM on the aspect of modelling accuracy.

Besides, Fig. 17 shows ARMS errors of the voltage magnitude
of the boundary buses and the power flows of all the branches
connected to the boundary buses in the IEEE 118-bus system. 
Compared with the capacity of the IEEE 118-bus system, the
capacity of the three distribution systems in Case II is minor. The
uncertainty in these three distribution systems cannot have a large
impact on the other state variables in the IEEE 118-bus system.
Hence, Fig. 17 selected the representative state variables to present.
The relatively minor errors of the CPLF-eq and MCSM-PLF-eq
can further substantiate the high accuracy of the equivalent model.

Fig. 13  Layout of the CTDS consisting of IEEE 118-bus system and three
different distribution systems

 
Table 7 Parameters of the distribution systems
Distribution system Line no. Voltage base Pl, MW Ql, Mvar
141-bus system [27] 140 12.5 kV 11.9 7.38
85-bus system [28] 84 11.0 kV 2.57 2.62
69-bus system [29] 68 12.7 kV 3.80 2.69

 

Table 8 Nodes with RES units installed
Distribution system Nw Npv
141-bus system 20 28 32 123 125 127 129 42 65 89 94
85-bus system 10 12 15 58 63 67 70 44 47 50 52
69-bus system 13 19 23 55 58 61 69 29 34 38 44

 

Table 9 Cumulants of the equivalent boundary power
injections in Case II
Method Bus γPeq

1 γPeq
2 γPeq

3 γPeq
4

PEMM 93 −0.1092 9.25 × 10−6 1.26 × 10−9 −1.78 × 10−12

102 −0.0251 4.48 × 10−7 1.57 × 10−11 −5.13 × 10−15

108 −0.0352 2.88 × 10−6 3.53 × 10−11 −1.50 × 10−14

LR 93 −0.1092 6.09 × 10−6 −5.77 × 10−9 −1.72 × 10−11

102 −0.0251 3.05 × 10−7 −5.02 × 10−11 −7.45 × 10−14

108 −0.0352 1.57 × 10−6 −2.6 × 10−10 −1.42 × 10−12

Method Bus γQeq
1 γQeq

2 γQeq
3 γQeq

4

PEMM 93 −0.0787 1.40 × 10−6 5.57 × 10−16 −6.09 × 10−21

102 −0.0280 1.58 × 10−7 −1.06 × 10−15 −1.41 × 10−20

108 −0.0280 1.20 × 10−6 −2.21 × 10−18 1.20 × 10−24

LR 93 −0.0787 1.04 × 10−6 2.32 × 10−11 −1.48 × 10−13

102 −0.0280 1.07 × 10−7 −1.87 × 10−13 1.77 × 10−15

108 −0.0280 7.68 × 10−7 1.11 × 10−11 −1.64 × 10−13

 

Fig. 14  PDF curves of the voltage magnitude of boundary buses in IEEE
118-bus system
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4.2.3 Computational efficiency: Table 10 shows the
computational efficiency of different PLF algorithms and models in
Case II. In addition to the main findings presented in Case I, the
superiority of the PEMM in accelerating calculation is more
obvious in Case II. For example, in Case I, using the equivalent
model to perform the PLF algorithms on the transmission system, it
can save about 81.89% of the time for the CPLF calculation and
about 41.45% of the time for the MCS-PLF calculation. In Case II,
using the equivalent model from PEMM to perform the PLF
algorithms on the transmission system can save about 90.00% of
the time for the CPLF calculation and about 71.52% of the time for
the MCS-PLF calculation. It is expected that the benefit of
boosting the calculation by using PEMM will be more obvious if
the scale of ADN becomes large. For PEMM, building the
equivalent model consumes 0.023 s and the CPLF calculation on
the equivalent model only consumes 0.085 s. Thus, PEMM can
facilitate some real-time applications.

4.3 Discussion

The results from Case II have shown the potential of the proposed
method on accelerating the probabilistic analysis of the IEEE 118
bus system with three heterogeneous distribution systems
connected. It is expected that with the expansion of the scale of the
distribution systems, the superiority of the proposed method over
conducting the analysis upon the whole system will be more
significant. Besides, it is noted that a practical transmission system
is connected to hundreds or thousands of distribution systems,
supplying power to a large area. In this context, the application of

the equivalent technique of distribution systems is imperative
because it is computationally intractable to analyse a transmission
network with detailed hundreds or thousands of distribution
systems. Besides, the PLF calculation based on the equivalent
method in Case II consumes only 0.085 s, which unveils the
potential of the proposed method in real-time scenarios. For
example, it can be applied in the real-time secure margin analysis
of the power flow of the tie-line between the transmission and
distribution networks. It is also promising in the online static
voltage stability analysis of the transmission system considering
the uncertainty of ADNs.

5 Conclusions and future work
A PEMM for ADNs considering the uncertainty of RESs is
proposed in this paper. The mathematical formulation of the
PEMM is investigated and extended to consider the correlations
among RESs. The copula function is utilised to characterise the
correlation among RES and an inverse transform sampling-based
method is used to derive the joint cumulants of power injections.
The case studies on two different test systems demonstrate the
effectiveness and necessity of PEMM. The comparison of both the
PDF curves and the ARMS errors demonstrates the superior
accuracy of the PEMM compared to the LR method. The PLF
results of the equivalent model obtained from the PEMM are in
good agreement with those of the original model. The simulation
results on a test system consisting of IEEE 118-bus system and
three different distribution system shows the potential of PEMM on
expediting the PLF calculations of the transmission system. It is

Fig. 15  PDF curves of the active power flow of the branches connected to
boundary buses in IEEE 118-bus system

 

Fig. 16  PDF curves of the reactive power flow of the branches connected
to boundary buses in IEEE 118-bus system
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reported that PEMM can save about 90.00% of the time for the
CPLF calculation and about 71.52% of the time for the MCS-PLF
calculation.

The proposed PEMM can be used to provide the equivalent
model for applications in transmission networks in which one
should consider the impact of RES. For example, PEMM can be
exploited to solve some real-time problems such as the real-time
secure margin analysis of the power flow of the tie-line between
the transmission and ADNs. Furthermore, the multi-linearisation
technique can be developed to tackle the voltage-related errors in
PEMM.
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