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Abstract—Investor-owned photovoltaic-battery storage systems
(PV-BSS) can gain revenue by providing stacked services, includ-
ing PV charging and frequency regulation, and by performing
energy arbitrage. Capacity scheduling (CS) is a crucial compo-
nent of PV-BSS energy management, aiming to ensure the secure
and economic operation of the PV-BSS. This paper proposes a
Proximal Policy Optimization (PPO)-based deep reinforcement
learning (DRL) agent to perform the CS of PV-BSS. Unlike
previous work that uses value-based methods with the discrete
action space, PPO can readily handle continuous action space
and determine the specific amount of charging/discharging. To
enforce the safety constraints of BSS’s energy and power capacity,
a safety control algorithm using a serial strategy is proposed
to cooperate with the PPO agent. The PPO agent can exploit
the capacity of BSS safely while maximizing the accumulated
net revenue. After training, the PPO agent can adapt to the
highly uncertain and volatile market signals and PV generation
profiles. The efficacy of the proposed CS scheme is substantiated
by using real market data. The comparative results demonstrate
that the PPO agent outperforms the Deep Deterministic Policy
Gradient agent, Advantage Actor-Critic agent, and Double Deep
Q Network agent in terms of profitability and sample efficiency.

Index Terms—Dbattery storage systems, deep reinforcement
learning, energy arbitrage, frequency regulation.

I. INTRODUCTION

The appeal for the low-carbon future spurs the increas-
ing integration of renewable electricity generation, including
utility-scale photovoltaic (PV) systems, to the power grid.
This trend also brings significant challenges to the stability
and reliability [1] of the operation of the power grid due
to the limited predictability and controllability of renewable
sources. Through providing great flexibility and smoothing
power fluctuation, battery storage systems (BSSs) are proven
to be an effective solution to the extensive integration of
PV. The decrease of the capital cost of BSSs facilitates the
development of the emerging co-located PV-BSS [2], [3],
which consists of one or multiple PV plants and BSSs. The
trend of combining PV energy with battery storage makes PV
generation increasingly competitive.

Investor-owned PV-BSS can be regarded as an independent
entity to the power grid, with the goal of maximizing the
revenue. Developing optimal scheduling strategies for the PV-
BSS has a huge influence on the revenue of the existing
systems and on the economic appraisal of the potential PV-
BSS projects, spurring a substantial body of research. Due
to the prominent flexibility and fast-response feature, BSSs
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can provide multiple services associated with multiple rev-
enue streams, including peak shaving [4], reserve [5], energy
arbitrage (EA) [6], frequency regulation (FR) [3], etc. It is
reported in [4], [5] that by providing the stacked services, the
owners of the BSS can make full use of the battery and earn
extra profit.

The conventional approaches to address the -capacity
scheduling (CS) problem of BSSs, which provides stacked
services are stochastic programming (SP) approaches [5],
robust optimization (RO) approaches [7], and model predictive
control (MPC) [8]. [5] presents an optimal joint bidding strat-
egy of BSS in the day-ahead market using scenario reduction
techniques. There is a tradeoff between the model granularity
and computation efficiency in [5]. The BSS bidding problem
in [7] is solved via iterating through a master problem and an
availability check max-min subproblem. Karush-Kuhn-Tucker
(KKT) conditions are used to transform the subproblem, which
is solved by column & constraint generation eventually. A
stochastic MPC framework [8] is introduced to determine the
commitments of BSS in energy and FR markets on both the
real-time and long-term time scales. However, the bidding of
frequency regulation capacity is not accounted for. Though the
optimization-based approaches have been making significant
advances, applying the solution of such approaches to the real-
world is limited because this kind of approach is dependent
on the assumption on the prior distribution of the random
variables. For example, the assumptions upon the distribution
or the range of the random variables and the convexity of the
optimization problem are indispensable in most cases [5], [7],
[8]. It is reported in [9] that it is still challenging to solve
the optimal battery control problem or give a guarantee on
any theoretical performance without a strong assumption of
the random signals. In most cases, only the historical data of
the random variables rather than the predefined distributions
are available, and it is tricky to formulate the problem as a
convex optimization problem. Besides, the SP approach in [5]
suffers from computational intractability when it encounters
the highly uncertain environment and relatively long schedul-
ing cycle.

Recently, leveraging the advancement of deep learning
and reinforcement learning (RL), deep reinforcement learning
(DRL) has aroused great interest in the academia and industry
[10]. In the field of smart grid, researchers have utilized
DRL to address numerous knotty problems, e.g., autonomous
voltage control [11], autonomous multi-energy management
[12], electric vehicle charging scheduling [13].

The fully data-driven DRL algorithms are the ideal ap-
proaches to tackle the CS problem with strong uncertainties



JOURNAL OF KX CLASS FILES, VOL. 0, NO. 0, OCT 2020

and long scheduling cycles. First and foremost, considering the
random nature of the PV generation and market signals, and
the time-coupled feature of the state of charge (SOC), the CS
of PV-BSS is essentially a discrete stochastic control process,
which can be modelled as Markov Decision Process (MDP).
DRL agents are notable for addressing such a problem. In
contrast to the SP-type methods dependent on the probability
density functions (PDFs) of random variables, DRL optimizes
policy directly on the basis of the historical/simulation data.
DRL algorithms outperform traditional optimization tech-
niques in terms of adaptivity. Different from the conventional
optimization techniques, which requires reformulation and
recalculation for various environments, DRL can output the
policy that is applicable to volatile and various environments.
What’s more, once trained, DRL agents can provide decent
scheduling results on test data, i.e. data that is not accessible
during the training phase, without the need to reformulate and
retrain. This phenomenal adaptivity is partially attributed to
the powerful function approximation function of the neural
network.

Q-learning and Double Deep Q Networks (DDQN) have
been used in [6], [14], [15] to control the charging/discharging
of batteries. However, since [6], [14], [15] focus on single
service only, namely EA, they all discretize the action space
of the battery. For example, in [14], [15], the statuses of
batteries, which consists of charge, idle, and discharge, are
determined by the DRL agent, neglecting the specific decision
on the amount. The action space of [6] is discretized into
five parts, which include the maximum and half maximum
charge/discharge power capacity, and zero. Though significant
progress has been made in [6], [14], [15], the assumption of the
discrete action space does not hold in the context of conducting
CS of batteries between stacked services. The precise and
specific amount of the charging/discharging power capacity
should be determined to fully exploit the profitability of
stacked services, which necessitates the adoption of continuous
action spaces.

This paper employs Proximal Policy Optimization (PPO)-
based DRL to dispatch the capacity of PV-BSS. PPO is a
cutting-edge DRL algorithm developed in [16], which is the
variant of Trust Region Policy Optimization (TRPO) [17] and
Advantage Actor-Critic (A2C) [18]. Similar to TRPO, PPO
can guarantee the safe exploration of the agent by scrutinizing
the distance between the updated policy and the previous
policy. PPO can be implemented in a more efficient manner by
avoiding tackling the complicated second-order optimization
problem in TRPO. More importantly, PPO can tackle the
continuous and multi-dimensional action space readily, which
is able to exploit the potential of the BSS providing stacked
services.

The contributions of this paper are summarized as follows:

1) A PPO-based DRL approach to learning the safe and
optimized CS policy for the PV-BSS in the context of
performing the stacked services is proposed in Section
II-A. Two essential charters in the DRL algorithm, i.e.
the environment and the DRL, are specified as a safety
control algorithm and a PPO agent, respectively.

2) A safety control algorithm (SCA) for PV-BSS is pro-
posed in Section II-C, which can coordinate the schedul-
ing of multiple services of the PV-BSS, including fre-
quency regulation, PV charging, and energy arbitrage. In
the proposed algorithm, the time-coupled characteristics
of SOC, the safe operation constraints of SOC, and
the upward/downward constraints of power capacity
are strictly satisfied. SCA features the serial decision-
making process, which eliminates the inclusion of the
penalties of the constraint violation on the reward func-
tion for the DRL agent and thus avoids the heuristic
design of the penalty coefficients.

3) A PPO agent, which serves as the energy management
unit by perceiving the system status and releasing the
control signal, is developed in Section III-B. Unlike
tradition optimization techniques, the fully data-driven
DRL agents are being trained upon the volatile training
data directly and can adapt well to the volatile and
various environments characterized by the significant
uncertainties from PV generation, price, and market
signals. The PPO agent features the adoption of a clipped
surrogate objective function, which is beneficial to the
sample efficiency and the convergence rate. Besides, in
contrast to most value function-based DRL agents which
are only applicable to the discrete action space, the PPO
agent is characterized by the continuous action space,
resulting in the better exploitation of the profitability of
the stacked services.

4) Case studies are carried out using real market data,
which are shown in Section I'V. Through the comparisons
with the Deep Deterministic Policy Gradient (DDPG),
A2C, and DDQN agents, the practicability and superi-
ority of the PPO agent are corroborated.

The rest of the paper is organized as follows. Section II
proposes a safety control algorithm for PV-BSS to perform
stacked services. Section III describes the proposed PPO-based
DRL approach and the training scheme of the PPO agent. Case
studies are conducted in Section IV using the real data from
the PJM energy and regulation market, which demonstrates the
practicality and superiority of the proposed scheduling scheme.
Finally, concluding remarks are given in Section V.

II. SAFETY CONTROL ALGORITHM OF PV-BSS TO
PERFORM STACKED SERVICES

In this section, an overview of the PV-BSS is introduced
first, in which the system components and functions are
presented. Then, the models of stacked services and their
individual revenue models are detailed, followed by analyzing
the profitability and the impact of these stacked services on
the battery power and energy capacity. Based on the analysis,
a safety control algorithm of PV-BSS to perform stacked
services is proposed to ensure the safe operation of the PV-
BSS while maximizing the system benefits.

A. System Overview: Components and Functions

Fig. 1 shows a schematic diagram of the investor-owned PV-
BSS, which consists of three core components, i.e., PV gener-
ation system, BSS, and energy management unit (EMU). The
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PV generation system utilizes the solar panel to transform solar
energy into electricity, which can be stored into the battery or
be sold to the power grid directly through the PV inverter. As
an intermediate, BSS interacts closely with the power grid and
PV generation systems via charging/discharging while EMU
functions as the core of the PV-BSS. It collects the predicted
PV power, the state of BSS, and market signals such as energy
and regulation market prices. With the collected information,
EMU dispatches the available battery capacity to maximize the
long-term cumulative revenue while guaranteeing the battery’s
secure operation. There are two types of lines in the diagram;
one is the dotted lines that represent the flow of information
in the system. The flow of information is made up of the
prerequisite input data needed for the EMU to make decisions
and the output data that represents the results of the EMU’s
decisions. The other is thick solid lines representing the
physical energy flow of the system.

In our paper, with the superiority of addressing sequential
decision-making problems, the DRL agent is leveraged to
perform the energy management task. The main characters in
the DRL algorithm are the DRL agent and the environment.
The general goal of the DRL agents is learning a policy to
maximize the expected utility via the trial and error interaction
with the environment.

For the specific task in this paper, the agent-environment
interaction loop for the DRL algorithm is plotted in Fig. 2.
The environment is the world that the agent lives in and
interacts with. At every step of interaction, the agent sees a
(possibly partial) observation of the state of the world and
then decides on an action to take. The environment changes
when the agent acts on it, but may also change on its own.
The safety control algorithm, which is elaborated in Section
II.C, can be interpreted as the environment to the DRL agent.
As shown in Fig.2, the state is set as a synthesis of available
PV power, battery status, and market signals, which are the
input information flow into EMU in Fig. 1 as well. The
action is set as control signals for the PV-BSS, which are
the output control signals from EMU in Fig. 1. «, 3, and
& are the ratio coefficients for the stacked services, which
will be elaborated in Section II-C. The agent also perceives
a reward signal from the environment, a number that tells it
how good or bad the current state is. In this case, the net
revenue from providing stacked services is used as the reward
signal. Further explanations and mathematical formulation for
the state, action, and reward are presented in Section II-C and
Section III-A. The detailed formulation and implementation of
the DRL algorithm are presented in Section III-B.

B. Stacked Services

For the PV-BSS, three primary services are taken into ac-
count, namely, PV charging, FR, and EA. Although providing
multiple services can bring more economic benefits, it also
brings challenges to battery control. One of the significant
challenges is that storage capacity is shared between the
stacked services dynamically. In other words, multiple services
share the same dispatchable capacity simultaneously. Further-
more, the charging/discharging behaviour is constrained by
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Fig. 2. Agent-environment interaction loop.

the physical capability of the battery, i.e., power and energy
capacity limits. EMU should coordinate these services and
exploit the charging/discharging capability of BSS to the full
extent.

1) Fast Frequency Regulation Service: PIJM has a relatively
mature regulation market, so this paper focuses on the market
mechanism of PJM, in which most BSSs are committed to FR
by tracking the Regulation D (RegD) signal. It is noted that the
control algorithm proposed in this paper can be generalized to
other markets. It is assumed that the role of PV-BSS in the
FR market is a price-taker, which means that it must accept
the prevailing prices in the market.

In this paper, the scheduling of BSSs is on an hourly basis.
Although the RegD signal is designed with the feature of
approximate energy neutrality, a battery still has a hourly
fractional energy loss [19], [20]:

T (87,
qt=Z<J’ +6j}-nch)-At (1

=1 Ndis

where hour ¢ is divided into J time intervals; 5;Lt/ - (|§;-ft/ 1<
1) is the j-th RegD signal at hour t. ”+” and ”-” denote
the regulation-up (discharging) signal and regulation-down
(charging) signal, respectively. 7., and 745 are the battery
charge/discharge efficiencies, respectively. At represents the
time interval of RegD signals, and it is set to be 4s in
PIJM. It is noted that the subscript ¢ is used as the index for
hour ¢ throughout the paper. The positive/negative ¢; indicates
that the BSS will discharge/charge, respectively, through the
provision of FR.
BSS will be reimbursed dependent on the deployed regula-
tion power capacity th [5], [19]:
Bf = P - (MEFCY 4+ FECP) )

where B! is the BSS’s revenue on providing FR; ); is the
mileage ratio; ; is the performance score; FFCF and FCCP
are the performance/capacity clearing prices, respectively.
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2) PV Charging: The available PV generation can be either
sold directly in the energy market or stored by BSS to perform
the EA and FR in the future.

Denote ﬁfv as the available solar power, which can be
divided into two parts, i.c., charging power PP"® and sell-
ing power PP¥®°. The revenue of selling PV power can be
calculated as:

BPY = PPVS . Ah - F™ 3)

where Ah is the time duration and is set to be 1 hour in
this paper; Ftlmp is the locational marginal price (LMP) of the
energy market.

3) Energy Arbitrage: EA is a measure adopted by the
operators of the BSS to take advantage of the price differential
between hours. Denote PtEA as the power capacity deployed
for EA. Positive and negative P’ denote buying and selling
electricity, respectively. The remuneration of performing EA
is calculated as:

BfA = —PPA AR F™P €5

4) Sequence of Stacked Services: To take into account the
physical capacity characteristics of the battery and to avoid the
DRL agent making decisions that violate capacity constraints,
scheduling can be made in the form of a proportional factor
based on BSS’s available power capacity. Unlike the solution
from the mathematical optimization models that can be applied
to the CS of battery in parallel, CS by DRL is arranged in
a serial strategy based on service type in this paper. In a
serial strategy, whenever a service is arranged, the available
power/energy capacity is updated. Fig.3 shows an example
for differentiating serial and parallel strategies. Assume the
blank rectangle represents the BSS’s available power capacity.
The parallel strategy dispatches the capacity for each service
simultaneously. However, the serial strategy dispatches the
capacity for each service in sequence. Whenever a service is
arranged, the available power/energy capacity is updated. The
motivation of the serial strategy is to boost the convergence of
the DRL agent, which is discussed further in Section III-A-3).

The sequence of services does not impact the optimality
of the DRL agent, as DRL has the ability to seek long-term
cumulative gains in a changing environment. However, the
sequence of services will affect how quickly the algorithm
converges, which is discussed further in the case studies. In the
following statement, to make our statement clearer, we assume
that CS is based on the following priorities: the proportion
factor for FR is determined first, then PV charging, and finally,
EA.

C. Safety Control Algorithm

The safety control algorithm can ensure that the operating
constraints of the battery are strictly satisfied, and it is detailed
in Algorithm 1, where «, 3, and & are the PV charging,
EA, and FR ratio coefficients, respectively. They represent the
control policy of the EMU, and they are generated by the DRL
agent simultaneously. The bound for ¢ and £ is [0, 1], whereas
the bound for 3 is [—1, 1].

Power capacity ' Power capacity

FR FR FR FR
nd PV - PV PV
| it

Parallel strategy Serial strategy

Fig. 3. Parallel and serial strategy.

For hour ¢, based on SOC}, the upward and downward
feasible region of SOC can be derived, respectively:

SOC,” = SOC — SOC,

dn &)
SOC™ = SOC, — S0C

Denote P and P32 as maximum upward and downward
power capacities of BSS, respectively. It is noted that P3P >
0 and P32 < 0 in the notation of this paper.

Among three services, the PV-BSS first dispatches the
capacity for FR. To ensure the charging power will not cause
the violation of the upper limit of SOC, the maximum possible

FR ratio coefficient is derived:

SOCPU
——mp > for g, <0 6)
é. o 7Pmax . qt
max =\ gocdny
2T for g > 0 7
—PI%I;X “qt o

where the product of PP /Pd8 and ¢, is the maximum
possible energy gain for a battery from FR at hour t; U is
the energy capacity.

After the &, is available, we can impose the clip function
clip on &, which is the raw control signal from the DRL agent,
to prevent the over-charging. The clip function can clamp all
elements in input into the range [min, max]. Let min_value
and max_value be min and max, respectively, clip function
returns:

y; = min(max(x;, min_value), max_value) 8)

In this case, the min_value and max_value are set to 0 and
Emax, respectively.
Then Pf is determined by:

pup ,
Ptf gt ma()l(n
ftl max) for qr > 0

for ¢; <0 ©)]
(10)
One exception is that if Pf is less than the minimum bidding

capacity specified in the frequency regulation market, BSS will
not be able to participate in the regulation market at hour ¢.

Due to the charging/discharging by FR, the
upward/downward space of SOC is updated as:
Pf
SOC™ « SOC™ + ift for ¢ < 0 (11)
Pf
SOC™ « SOCd™ — fUQf for g, > 0 (12)
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Similarly, the remaining maximum upward/downward
power capacity of BSS at time ¢ can be obtained:

puep . pup0 _ Ptf,for q <0

max max

P« pdn0 4 pf for ¢ > 0

max max

(13)
(14)

If the current PV generation is available ﬁfv > 0, derive
the maximum possible PV charging ratio coefficient to prevent
the overcharging:

SOCPU
Omax = —pr——— (15)
Py Ah - nen
Then impose the clip function on «a; to hamper the excessive
charging of the BSS. Besides, the power capacity dispatched
for the PV charging should be limited as follows:

PPV = clip(P;" - 1,0, Pab,)

max

(16)

Due to the PV charging, the upward space of SOC is
updated as:
PPYCAh - o,

SOC? - SOC® — T A7)
Similarly, PP is updated again as:
Péllgxkpr?lgx_Ptpv’e (18)

The direction of EA is indicated by the sign of 3;. Positive
and negative 3; indicate BSS purchasing and selling electricity,
respectively. The maximum possible EA ratio coefficient is
derived as:

up
o %, for B >0 (19)
m7 for B, < 0 (20)
After clipping §; with:
B = clip(B, 0, Bmax), 2y
PFA is calculated as:

pEA _ { P;g;; B¢, for >0 (22)
—Po - B, for f <0 (23)

After EA, we update the available power capacity:
Pyhy = Pl — PP forf, > 0 24)
pln = pin — PEA forf, < 0 (25)

The frequent deployment of BSS will induce the degrada-
tion of the battery, which is considered as the cost during
the operation. The cost model of degradation in [4] is used,
which assigns a constant marginal cost for battery charg-
ing/discharging:

Cr = c- (P — P + (Pand — P,

max max max

(26)

where ¢ is the depreciation cost coefficient ($/MW), which
depends on the investment cost of the BSS; C; is the degra-
dation cost at time step t. The depreciation cost here is
originated from cycle degradation, which is related with the
battery operation regime. The introduction of the depreciation
cost/operating cost prevents the batteries from excessive de-
ployment, which is closer to the actual operating environment
of the batteries.

The SOC of BSS is time-coupled. SOCY, 1 is dependent on
SOC; and discharge/charge behavior at hour ¢:
Pf PPV AR - nen
SOCis1 = SOC, — =t 4 L=y
[sgn(B)]* PP - Ah ey [sen(=B,)]TPPA - Ah
_|_
U naisU

27)

where sgn is the sign function and [ | is the rectified linear
unit (ReLU) function. The adoption of these two function
serves as the logic expression: when 3, > 0, the fifth term
of (27) becomes zero; when (3; < 0, the fourth term of (27)
becomes zero.

After T time intervals, the cumulative revenue over the
whole scheduling cycle is obtained by summing up the net
profit of PV-BSS at each hour:

T—1
B=Y B +Bl"+B}-C
t=0

(28)

B is a random variable considering the time-varying and
random features of the PV generation and market signals.
Hence, the ultimate goal of the DRL agent is maximizing the
expected value of B.

Algorithm 1 Safety Control Algorithm for PV-BSS
Input:
System parameter: SOC,, SOC, SOC, Pup9,
B%%}?,Pf’min,ndis, Nen» U; Predicted solar power:
P ; Market signal: F'mp  pCCP pPCP N g
Control signal: o, 3, &

1: for each t € [0,7 — 1] do

2. Calculate SOC}® and SOCE™ using (5).

3:  Perform frequency regulation:

4:  Dispatch FR capacity via (6) or (7) depending on the
sign of ¢;, impose the clip function, obtain Pf via (9)
or (10) considering Pfmin,

5. Update SOC;® and PY2_ via (11) and (13), respec-
tively; or update SOC™ and P32 via (12) and (14).
The revenue of FR is calculated by (2).

Allocate PV power:
if P, > 0 then
Dispatch the PV power via (15), (16), (17), (18). The
revenue of selling PV power is calculated by (3).
10:  end if
11:  Perform energy arbitrage:
12: if 8; > 0 then

Pup,O

R

13: Conduct purchasing with (19), (21), (22), and (24).
14:  else

15: Conduct selling with (20), (21), (23), and (25).

16:  end if

17:  The revenue of EA is calculated by (4), calculate the
degradation cost with (26), and update SOC of BSS
using (27).

18: end for

19: Calculate the cumulative net revenue using (28).
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III. DEEP REINFORCEMENT LEARNING

This section mainly describes how to generate the control
signal of EMU to guide the optimal and safe CS of the PV-
BSS. In the following of this section, the MDP of CS for PV-
BSS is formulated, followed by the derivation of the battery
control signals generated by one of the cutting-edge DRL
algorithms, the PPO [16].

A. Markov Decision Process

The CS problem of PV-BSS can be modelled as MDP,
which can be solved by the DRL algorithm. A finite horizon
discounted MDP is characterized by a tuple (S,a,P,r, ),
where S is the state vector, a is the action vector, P is the
state transition function, r is the reward function, and ~ is
the discount factor. P is dependent on the environment and
partially described in (27).

The essential elements in the finite horizon discounted MDP
corresponding to the CS of PV-BSS are defined as follows:

1) The state vector is represented as:

S = [SOC®, SOCI™  F™ gy, xt, P} | (29)

where x; = ¢ - (AFFP + FFCP). The agent can
access the current state of the BSS, the market signals
from the regulation and energy market, and the available
PV generation. It is noted that only the information
available at the current time step is included in the
state vector. This is restricted by the Markov property of
MDP, in which the conditional probability distribution
of future states of the process depends only upon the
present state, not on the sequence of events that preceded
it.

2) The action vector is represented by a = [ay, B¢, &,
which corresponds to the capacity dispatch decisions for
the stacked services. The control problem in this paper
is characterized by the continuous action space, which
is more appropriate for controlling the battery.

3) The reward function is defined as:

re = BPA + BY + Bf — ¢, (30)

where r; also represents the net profit of the PV-BSS
at hour t. Compared with the existing works which are
dependent on designing a delicate reward function, the
reward function used in this paper is more straightfor-
ward and easier to implement.

The operation of the battery must satisfy the safety
constraints, including the maximum/minimum SOC and
maximum power capacity. If we directly apply the DRL
to control the operation of the battery, one indispensable
step is integrating penalties on constraint violation into
the objective function. Despite the prevalence of the
penalty function method, it is notorious for lacking
a systematic method to determine the proper penalty
coefficients. The small penalty coefficients may cause
the constraint violation, while the large penalty coeffi-
cients will introduce significant errors and lead to the
deterioration of the performance of the agents. The
choice of the penalty coefficients is so important, and
it may dominate the performance of the optimality and

the convergence of the algorithm. In contrast, the reward
function defined above is quite straightforward and easy
to implement. It avoids introducing the penalties for
the violation of constraints in the reward function. This
is attributed to the serial strategy of the safety control
algorithm to some extent. One significant benefit brought
by adopting such a reward function is the excellent
convergence performance of the PPO agent, which is
verified in the case studies section.

B. Proximal Policy Optimization

PPO is a cutting-edge DRL algorithm developed in [16].
PPO can guarantee the safe exploration of the agent and make
the full use of the available samples simultaneously. Moreover,
PPO can tackle the continuous and multi-dimensional action
space readily. Hence, along with the safety control algorithm
proposed in section II-C, PPO is an appropriate solution to the
CS problem of the PV-BSS.

1) Preliminaries and Notation: The advantage function,
which measures how much an action is better than others on
average, is defined as:

AT (s a8) = Q™7 (s¢,a) — V™7 (8¢) 31
Ve (St) = E5t+1;oc [Z ’ert+l‘| (32)
1=0
Q™" (st,a¢) = Esiiro0 [Z ’Yth+l‘| (33)
Gt:o0 1=0

where V™7 and Q™7 are the value function and action-
value function, respectively; One of the widely used estimation
approaches for A™7 is the temporal difference generalized
advantage estimation [18].

In the context of the actor-critic type DRL algorithm, 7y
represents the agent’s policy on choosing the action and is
parameterized by 6. In other words, 7y is the actor network,
and it maps the observation received by the agent to the action.
V represents the value function network parameterized by ¢.
Vg is also denoted as the critic network. Both g and V, are
represented as multi-layer perceptrons (MLP) because of their
powerful function approximation capability.

2) PPO: Utilizing importance sampling techniques, PPO
derives a novel policy gradient expression, which makes it
possible to update the policy network multiple times after
collecting the trajectory set. This strategy improves the sample
efficiency and training stability of PPO.

As an appreciable distinction, PPO employs a clipped
surrogate objective function [16]:

JPPO _ max B [L (s, a,0014,0)] (34)
$,A~T0619

L (s,a, 0014, 0) = min(py A™1 (51, ar),

(s,a,0014,6) =min(p; (st,at) (35)

Chp (ptv 1- €, 1+ 6) A0 (sta at))

where ¢ is the hyperparameter which controls the permissible
policy deviation; p; is a ratio coefficient between the updated
policy and the old policy and p; = % Specifically,
the further the value of p; deviates from one, the farther the

updated policy is from the original policy.
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The motivation of the adoption of (34) is that it can deter the
drastic change of the policy network, which may deteriorate
the performance of the PPO agent. To be specific, a clip
function can be interpreted as a regularizer for the policy
network. For example, assume A" (s, a;) > 0, (35) can
be reduced to:

L (s,a,0,0) = min (p;, 1 + €) A™1a (s¢,a:)  (36)

in which the value of 7y (a¢|s;) will be increased during the
update process. However, if mg(a;|s;) > (1 + €)mg,,, (at|st),
the min operator will be in effect and forces the p, to stay at
1 + €. Similarly, the clip function will enforce the minimum
of p; to be 1 — ¢ if AT (s¢,0a¢) < 0.

According to (34), the parameters of the policy network
(actor) 6 are updated as follows in the PPO:

Opnew = arg max E [L(s,a,004,0)]

S,aNﬂ'gold

(37

In the implementation phase, there are three steps to up-
date the parameters of the policy network (actor). Firstly,
calculate E [L(s,a,004,0)] based on the experience

S,a~~Tg
data collected mithe agent-environment interaction. Herein
the expectation operator E is usually approximated by the
mean operator in practice using the Monte Carlo approxima-
tion. Afterwards, because the optimizer in the deep learning
libraries is designed to minimize the loss function, we can
regard E  [-L(s,a,604,0)] as the loss function. Lastly,

s,anvTg
the gradient ﬁlf)idate process can be conducted using the chain
rule, followed by updating parameters as shown in (37).

Another vital network to be learned is the value function
network, which is updated via the regression:

N2
¢ =arg min[(V¢ — Rt) ,
’ , (%)

(Clip (V¢> V¢’old -5 V¢01d + 5) - Rt) ]

where R, is the reward-to-go: R, = Zf/:t T (S, apry Spr41)-

3) Stochastic Diagonal Gaussian Policies: To tackle the
continuous action spaces, this paper employs the stochastic
diagonal Gaussian policy. To be specific, the output of the
actor network my is assumed to be the mean vector of the
actions, which follow a multivariate normal distribution with
the diagonal covariance matrix. The diagonal elements of the
covariance matrix are the variances of each action.

When the PPO agent attempts to determine the action based
on the observation, it depends on the sampling of the actions
from the multivariate normal distribution:

a=pg(s) +og(s) ox (39)

where x is the sample vector of a standard multivariate normal
distribution; p and o are the mean and standard deviation
of the action vector; ® is the element-wise product. The
exploration of the PPO agent is achieved by sampling the
Gaussian distribution in (39).

Based on the stochastic diagonal Gaussian policies,
mg(a¢|s:) can be derived as:

1 k 1)
_— 40
(2m)k/2 [T} o ; o

W@(at|8t) =

4) Early Stop Mechanism: Even with the clipped surrogate
objective function described above, it is still possible that the
updated policy gets too far away from the old policy during
the update process. One practical technique to prevent this
phenomenon is the early stop mechanism based on monitoring
the Kullback-Leibler (KL) divergence of the policy.

KL divergence calculates a score that measures the diver-
gence of one probability distribution from another. The KL
divergence for distributions P and () of a continuous random

variable can be defined as:
p(x)>
p(x)lo < dx
(z) log )

Den(PI@) = |
where p(z) and ¢(x) are the probability density functions (pdf)
of P and @, respectively.

Since the outputs of the actor networks are the normal
distributions, in our case, preventing the updated policy from
getting too far away from the old policy is equivalent to
preventing the approximate KL divergence of these normal
distributions from violating the upper limit Dxr, max. The
approximate KL divergence of outputs at time step ¢ is defined
as:

oo

(41)

0014 (at|5t))
’/Tg(at‘st)

where 7y (a¢|s;) here can be interpreted as the value of the
PDF of action a; under the state s; and current policy my.

During the process of updating the actor network within one
epoch, once the average Dk, (7o, , [|79,:) over all time steps
and all episodes exceeds the threshold Dxi, max, the early
stop mechanism will be activated to stop the further gradient
updates.

5) Training Scheme: The goal of the PPO agent is max-
imizing the expected cumulative reward along the trajectory.
The training scheme is summarized in Algorithm 2 [16].

Dxy (7T901d,t H7r9,75) = log( (42)

Algorithm 2 PPO Agent Training Scheme
1: Initialize policy network 7y and value function network
V.

2:2fori=0;i< N;i++ do

3:  Policy agent mp_,, interacts with the environment using
(39) and records the trajectories samples {7; }. Calculate
the reward-to-go Ry.

4:  Based on the value function V., perform the advan-
tage estimation and obtain A™%ia.

5:  Update mg N, times with early stop mechanism using
(34).

6:  Update V;; Ny times using (38).

7: V¢Old (—V¢; o, < Tg.

8: end for

old

IV. NUMERICAL RESULT

To demonstrate the effectiveness of the proposed method,
case studies are conducted based on the real-world data from
PIM [21]. The solar power data is obtained from the National
Renewable Energy Laboratory [22]. The parameters of PV-
BSS to be used in the case study are summarized in Table I.
Table I also shows the hyperparameters of the PPO. N, and
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Ny, are the numbers of iterations of the actor network and
critic network, respectively. Ir, and [y are the learning rates
for the Adam optimizer of the policy network and the value
function network, respectively. As the benchmark, A2C shares
the same hyperparameters except for K L™**, ¢ and N. Both
PPO and A2C use the MLPs with two hidden layers as the
policy network and the value function network, respectively.
The number of neurons in each hidden layer is 64. The
activation function of the hidden layer is a hyperbolic tangent
function. The output activation function of the policy network
is a hyperbolic tangent function as well. After obtaining the
action vector a = [ay, B¢, &) from the policy network, oy and
&; are mapped to a [0,1] space to produce the expected control
signal.

In addition to the A2C agent, the DDQN agent adopted
in [6] with the discrete action space is applied to the CS
task. The action spaces of the DDQN are designed as
suggested in [6]: oy € [0,1/2,1], & € [0,1/2,1], and
By € [—-1,-1/2,0,1/2,1]. Hence, the action dimension of
the neural network, i.e., the size of the output layer, is set
to be 3*5%*3=45. Apart from PPO and A2C, another well-
known DRL agent in the continuous action space is DDPG,
which is characterized by learning the Q-function and policy
simultaneously and its deterministic policy. One of the es-
sential ideas in DDPG is that it approximates the calculation
of action which maximizes the Q function using the output
of the policy network, which eliminates the need for solving
a highly non-trivial optimization problem. As an opponent,
the DDPG [23] agent is also implemented to conduct the
CS task under the same environment as PPO. Consistent
with the DDQN, the DDPG also uses the replay buffers and
the target networks strategy to stabilize the training. The
hyperparameters of the DDPG agent and the DDQN agent
are well-tuned by using hyperparameters tuning technique to
achieve the best performance [6].

The scheduling cycle is one week (168 h) in the case study.
Thus, the predefined trajectory length is 168. The market data
in 2018 are split into training and testing sets: the first nine
months are for training, and the rest three months are the
testing set. For each epoch, 12 trajectories are collected to
update the PPO and A2C agents.

All tests are performed on a computer with Core i7 pro-
cessor running at 3.2 GHz and 16 GB of RAM. The DRL
code is implemented on the platform of Pytorch, and the
hyperparameters tuning is performed using Optuna package
on Python.

A. Performance of PPO

The average weekly revenue is regarded as an index to
evaluate the learning performance of the DRL agents. Figure
4 shows the average weekly revenue evolution curves of
the PPO, A2C, DDQN and DDPG agent during the training
process. The PPO agent converges after epoch 75, reaching
around $47,700. To evaluate the training time of the PPO, five
different random seeds are used independently. it took a total
of 300.75 +/- 2.85 s for the PPO to reach convergence, while
the entire training process (200 epochs) consumes 795.30 +/-
3.55 s in total.

TABLE I
PARAMETERS OF THE PV-BSS AND HYPERPARAMETERS OF THE PPO

Parameters Value Parameters Value
So 0.5 € 0.2
o) 0.95 o 0.91
Ndis! Mch 0.9/0.9 A 0.97
S1S 0.1/0.9 lre 1lry 5.7e-4/1.2e-7
U 30 MWh N/ Ny 80/80
c 0.5$/MW K[ max 0.015
Pdn 1 PR2  -10MW/1OMW
Ah | At 1h / 4s log og -0.6

The initial points of the curves represent the performance of
the random policy, which is around $30,168. Compared with
the random policy agent, the PPO agent improves the net profit
by about 58.1%. The random agents defined in our paper are
equivalent to the untrained agents. A PPO agent is made up of
the policy and value networks, which are represented by two
different MLPs. In our implementation, as suggested in [24],
the orthogonal initialization and layer scaling techniques are
applied to give the PPO agent a better initial policy and value
network. One of the motivations for using such initialization
is to speed up the convergence of the agent.

The A2C agent converges to $36,355 after epoch 150. the
PPO agent outperforms the A2C agent by about 31.2% in
terms of revenue. The reason is that PPO employs a clipped
surrogate objective function, which allows the approximately
biggest possible improvement on the policy network every
iteration, thereby avoiding the aggressive update and the
performance collapse.

The DDQN agent converges to $34,700 after epoch 160.
The PPO agent outperforms the DDQN agent by about 37.5%,
which justifies the necessity of the continuous action space for
the CS of battery. The DDPG agent converges to $39,880 after
epoch 140. The plateaus shown in the DDQN and DDPG agent
are caused by the mechanism that agents will not be trained
until filling up the replay buffers. Even with the advantage
of handling continuous action spaces and off-policy design,
DDPG is still inferior to PPO agents for the CS problem
in this paper. The PPO agent outperforms the DDPG agent
by about 19.6%. In addition, the training stability of PPO
is significantly better than that of DDPG. The training curve
of PPO is an approximately monotonically increasing curve;
however, the curve of DDPG undergoes a deterioration of
performance during training. After the training is completed,
the performance of PPO is relatively stable in the interval
of epoch [75,200] with a variance of 256.59. In contrast, the
variance of the performance of DDPG in the interval of epoch
[140,200] is 315.07, which is greater than that of PPO by
22.79%. This result can justify the superiority of the PPO
agent over the DDPG agent in the training stability.

It can be observed that PPO provides a better convergence
and performance rate than DDPG. This is because DDPG
is limited by: 1. Since Q values are very noisy, Q function
network tends to overestimate the action values, causing the
algorithm to converge to a poor solution; 2. there are four
networks in the DDPG agent, namely, policy network, Q
function network, target policy network, and target Q function
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network. The interaction between the current network and the
target network makes convergence more difficult, compared
to the PPO agent with only two networks; 3. To make DDPG
policies explore better, noise upon the actions at the training
phase is introduced. The convergence of the DDPG agent relies
highly on the noise setting, whereas there is not a systematic
way to determine the scale of the noise. What is more, the
PPO agent directly optimizes for the agent performance, as
opposed to the DDPG agent that trains the Q function to satisfy
the Bellman equation. This feature also makes the PPO agent
more stable and reliable [25], [26].

Another perspective for evaluating the efficiency of the
DRL algorithms is sample efficiency. DRL is a class of trial
and error learning methods. In the computation of the DRL
algorithm, in addition to training the neural network, a lot of
time is spent on the interaction between the agent and the
environment, that is, on collecting experience. Therefore, the
best performing agent with the smallest number of samples is
preferable. PPO uses only about 36%12*%168 = 72,576 samples
to achieve the ultimate performance of A2C, where A2C needs
150%12*168 = 302,400 samples. Since DDPG and DQN are
off-policy DRL algorithms, they use random sampling from
inside the replay buffer for training, a mechanism that is
significantly different from on-policy PPO. Therefore, there
is no direct comparison between the sample efficiency of PPO
and off-policy type algorithms. However, we can see from
Fig. 4 that PPO still uses fewer epochs to achieve better
performance.

In terms of testing data, Figure 5 presents the revenue
of each week earned by the DRL agents from October to
December in 2018. The performance upon the testing set can
demonstrate the generalization of the DRL agent because the
agents have never been exposed to these data before. It can
be seen from Figure 5 that the PPO agent is dominant over
the A2C agent, the random agent, the DDQN agent, and the
DDPG agent all the time. To be specific, depending on the PPO
agent, the PV-BSS can obtain $511,703 net profit in total from
October to December, which is $20,606 more than the DDPG
agent, $26,925 more than the A2C agent, $36,400 more than
the DDQN agent and $212,128 more than the random agent.
Hence, the PPO agent can adapt to the uncertain environment.
The results above can demonstrate the superiority of the PPO
agent over other DRL agents in addressing the CS problem of
PV-BSS.
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Fig. 4. Training process of PPO and A2C.
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TABLE I
NUMBER OF EPOCHS NEEDED FOR DIFFERENT SERVICE SEQUENCES TO
CONVERGE TO THE OPTIMAL SOLUTION

Sequences  S123  S132  S213  S231 S312  S321
Epochs 75 149 294 512 330 273

B. Discussion of the Sequence of the Services

TABLE II summarizes the number of epochs needed for
different service sequences to converge to the optimal solution
(around $47,700). The numbers 1, 2, and 3 in the table
represent the FR, PV charging, and EA, respectively. The data
presented in the table is obtained from the different PPO agents
with the well-tuned hyperparameters to report each agent’s
best performance and conduct a fair comparison.

The sequence of services does not impact the optimality
of the DRL agent, which demonstrates the robustness of the
DRL agent to seek long-term cumulative gains in a changing
environment. However, the sequence of services will affect
how quickly the algorithm converges. The sequence S123 is
the most efficient among all the sequences, which takes only
75 epochs to converge. The rationale for this result is given
as follows.

Assume that ¢, < 0 and PFA > 0 at hour ¢, the services
which lead to the rising of the SOC include FR, PV charging,
and EA. Through performing the FR, the PV-BSS can raise
the SOC and get paid as well. In contrast, to raise the SOC,
performing EA requires the PV-BSS to purchase electricity
from the energy market. As an intermediate, performing PV
charging can raise the SOC at no expense. Hence, the DRL
agent should decide P! first. Afterward, based on the updated
upward space of power capacity, the DRL agent settles PP*°
and PPY*, followed by PFA.

Assume that ¢; > 0 and PF* < 0 at hour ¢, which means
performing the FR and EA will decrease the SOC of BSS.
The energy-neutral characteristic of the RegD signal enable
the PV-BSS to obtain the remuneration without losing much
battery energy [21]. Besides, it is reported in [5], [19] that FR
is the principal revenue source for BSS. Thus, herein the DRL
agent should allocate P! first, followed by PFA.

C. Capacity Scheduling Scheme

The CS scheme for the first week of January is presented
in Figure 6. The SOC curve of the battery is within the
safety range of [SOC, SOC] over the whole scheduling
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cycle. Furthermore, the power capacity deployed to the stacked
service is also within the safety constraint. This result verifies
the effectiveness of the proposed safety control algorithm of
PV-BSS to perform stacked services. The power capacity of
BSS deployed for performing FR is dominant over all other
services most of the time. This is because of the pay-for-
performance mechanism of the PIM regulation market, which
provides a significant economic incentive for the BSS with
the fast-response feature. The PPO agent prefers to selling the
PV power generated at the current hour instead of storing it
because using the limited power capacity for FR and EA is
more profitable in our case.
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o 0.55
2 so
2 0.50
>, 25
:‘:é 00 ! 0.45§
O s 0.40
Z
s - 0.35

7.5 EA

PV charging | 0.30
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. . . Hour index
Fig. 6. Capacity scheduling scheme for the first week of January.

D. Analysis of Revenue

The detailed revenue of the stacked services is shown in
Figure 7. According to the statistics of the first week in
January, the net profit is $13195, which is made up of selling
PV power($9,986), EA($1023), FR($2852), and depreciation
cost(-$666). It is noted that the calculation of the revenue and
depreciation cost are based on the model presented in Section
II-B and Section II-C, respectively. It is easy to see that the
revenue from the daytime is much more than that from the
nighttime because of the availability of solar power. Besides,
FR provides as much as around three times the profits of EA,
which is consistent with their scheduled capacity.
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Fig. 7. Detailed revenue and expenditure of the stacked services.

Figure 8 shows the power capacity deployed for EA and the
LMPs in the first week in January. The result corroborates the
capability of the PPO agent to make profits with EA. It can
be observed that the PPO agent can capture the price trend
of the energy markets and make a judicious decision. Most
of the time, the PPO agent purchases at a relatively low price
and sells at a relatively high price. It is noted that the price
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Fig. 8. Power capacity deployed for EA and LMP price in the first week of
January.

trend is not consistent with the EA power perfectly because
of the existence of other services.

It is worth mentioning that the trained PPO agent consumes
only 78 ms to make the scheduling decision, resulting from
the computationally efficient feed-forward matrix computation
of the neural network. The unrivalled execution speed reveals
the potential of PPO in the real-time market environment.

E. Analysis of Hyperparameters

Two popular hyperparameter optimization frameworks used
in machine learning are Exhaustive Grid Search (EGS) and
Randomized Parameter Optimization (RPO), respectively. The
EGS exhaustively generates candidates from a grid of hyper-
parameters specified by the users. Afterwards, independent
experiments are run on these candidates exhaustively to find
the best hyperparameters. In contrast, RPO features searching
randomly over hyperparameters, where each setting is sampled
from a distribution over possible hyperparameter values. RPO
is utilized here because of its flexibility which enables the
search over a large range of hyperparameters without loss of
efficiency. Besides, a budget can be chosen independent of the
number of hyperparameters and possible values.

After numerous simulations, we find that three hyperparam-
eters dominate the performance of the PPO agent in the context
of the CS of battery, namely lr, I7y, and . In addition, all
other hyper-parameters are listed in TABLE 1.

lry and lry are the learning rates for the Adam optimizer
of the policy network and the value function network, re-
spectively. v is the discount factor for evaluating the value
function. Assume the Ir, and the Iry follow the log-uniform
distribution over (le-7, le-4) and (le-7, le-5), respectively.
Assume the ~ follows the uniform distribution over (0.9,
0.99). Considering the limited computational resources, 30
independent optimization calculations based on 30 different
hyper-parameter setting samples are conducted.

TABLE III shows the performance of the best eight as well
as the worst eight groups and their corresponding hyperparam-
eter settings. We can summarize the following general pattern
from the table: relatively small v and [ry help to improve
the performance of the PPO agents in the given range above.
Conversely, agents with relatively large [r, perform better.
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TABLE III
HYPERPARAMETER TUNING RESULT

index  Weekly Net Revenue / $ ¥ lrx lry
#4 30532 0.920 1.33E-07 1.99E-06
#5 31121 0.923  5.39E-07  8.32E-07
#8 31759 0.928 6.73E-07 4.21E-07
#2 34730 0939 1.10E-06  2.69E-06
#6 34992 0938 1.16E-06  5.17E-06
#9 36093 0.942  1.70E-06  1.40E-06
#15 39764 0905 4.23E-06 3.69E-07
#17 39770 0.909 4.29E-06  1.26E-07
#19 41871 0.901  6.50E-06  6.20E-07
#26 45215 0901 1.71E-05 1.36E-07
#20 45378 0918 2.98E-05 2.27E-07
#23 45379 0901 491E-05 1.07E-07
#16 45435 0911  2.15E-05 1.91E-07
#18 45484 0916 2.71E-05 1.86E-07
#14 45514 0.908  3.00E-05 3.93E-07
#22 46541 0900 3.35E-05  1.44E-07
#21 47044 0912  5.62E-04  1.21E-07

V. CONCLUDING REMARKS

This paper proposes a pragmatic solution to the capacity
scheduling of PV-BSS, which performs the stacked services.
A safety control algorithm of PV-BSS is proposed to ensure
the safe operation of the PV-BSS. A PPO-based DRL agent is
developed to cooperate with the control algorithm to improve
the profitability of PV-BSS. Case studies based on the real
data of the PIM energy and regulation markets are conducted.
In the training phase, the PPO agent outperforms the DDPG
agent, the A2C agent, the DDQN agent, and the random
policy agent by 19.6%, 31.2%, 37.5%, and 58.1% in terms of
the weekly net profit, respectively. Moreover, the PPO agent
is significantly more sample-efficient than the A2C agent.
The PPO agent also shows better adaptivity than other DRL
agents throughout the test set. The results on the testing data
verify the PPO agent can adapt to volatile market signals and
PV generation scenarios. Case studies on the real-world data
demonstrate that the PPO agent is capable of generating safe
scheduling schemes while maximizing the net profit of PV-
BSS.
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