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Abstract—Equivalent modeling for active distribution network
(ADN) is essential to improve the efficiency of analyzing the
transmission network. The currently available equivalent model-
ing methods for ADN neglect the probabilistic characteristics of
renewable energy sources (RES). To tackle this issue, this paper
proposes a probabilistic equivalent modeling method (PEMM)
for ADN considering the uncertainty of RES. In the proposed
method, the uncertainty of RES is reflected in the equivalent
boundary bus injection using the cumulant analysis based on
the approximate linearization of ADN. PEMM is extended to
incorporate the correlation of RES through the orthogonal trans-
formation. A sampling method using Gaussian copula function
is employed to generate the correlated samples and the joint
cumulants, providing the input data for PEMM. The results of
case studies demonstrate the effectiveness of PEMM and verify
that the involvement of correlation can improve the accuracy of
PEMM.

Index Terms—Active distribution network, correlation, cumu-
lant, equivalent modeling, uncertainty

I. INTRODUCTION

UE to the increasing appeal to the utilization of clean
energy, the large-scale renewable energy sources (RES)
are integrated into the distribution network [1]. Nowadays, the
distribution network gradually turns into the active distribution
network (ADN), which may supply the surplus power for
the transmission network when RES is abundant. Hence, the
analysis of the coupled transmission and distribution system
(CTDS) must consider the impact of the RES. From the
perspective of transmission system operators (TSOs), it is
impractical and unnecessary to analyze the transmission side
using the detailed model of ADNs for two reasons. First, the
scale and complexity of the ADN will impair the efficiency
of the analysis procedure. Second, TSOs and distribution sys-
tem operators (DSOs) usually function independently, which
means that the detailed information of them is commercially
sensitive and not transparent to each other. As an essential tool
to analyze the transmission network considering the impact
of the RES, the equivalent methods for ADN has recently
attracted the attention of researchers. The main goal of these
equivalent methods is to construct the equivalent model of
ADN, which can preserve the behaviours of ADN while
keeping the structure and the mathematical model as simple
as possible.
Because ADN is characterized by the penetration of RES,
the modeling of the renewable power generation is critical
to the equivalence of ADN. To conduct the dynamic analysis,
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[2] and [3] use an equivalent converter-connected synchronous
generator to represent the distributed generators (DGs) in
ADN. In [4], the photovoltaic (PV) generation systems em-
bedded with voltage support schemes in ADN are aggregated
to a separate equivalent PV generator which preserves the
voltage support schemes. In [5], the equivalent model for
DGs is derived from the numerical approach, in which the
reactive power output and the inverter power loss of the DGs
are considered. References [6] and [7] adopt an equivalent
generator to represent the DGs in ADN and the nodes with
DGs connected in ADN are regarded as either PQ nodes or
PV nodes. The aforementioned references [2]-[8] ignore the
uncertainty of the DGs of RES. In fact, uncertainty is the
inherent property of RES due to climatic conditions. In terms
of the economic dispatch, neglecting the uncertainty of RES
may result in the untrustworthy operation schedule and thus
the operators may have to deploy excessive reserve capacity
[9]. Besides, taking the uncertainty into account can help
operators to obtain a better solution to long-term planning and
congestion management. Thus, the equivalent model for ADN
should take the uncertainty of the RES into account, so as to
provide the model for further research and analysis.

Except for the uncertain property, another vital feature of
RES is the correlation. Since the regional scope of ADN is
usually small and the meteorological condition within ADN is
similar, the wind power generation in different wind farms in
ADN is correlated [10], so is the PV generation in different
PV plants. Ignoring the correlation can lead to the biases in
the analysis results of the system, resulting in higher operating
costs and higher risks to the stability of power system [11].
Hence, the equivalent model for ADN should consider the
correlation of RES. Reference [12] uses Cholesky decomposi-
tion to generate the correlated variables which only represent
the linear correlation. Reference [10] uses the copula function
to describe the non-linear correlation. However, when using
the copula function to handle the correlation, few references
investigate the derivation of the joint cumulants, which are the
essential quantities towards joint probability distribution.

To summarize, few studies have considered the uncertainty
of RES when developing the equivalent model for ADN
despite the uncertainty of RES is essential in the analysis
and optimization of CTDS. In addition, the correlation of
RES is seldom discussed in the currently available equivalent
modeling method. To bridge these gaps, the contributions of
this paper are summarized as follows:

(1) A probabilistic equivalent modeling method (PEMM) is
proposed to obtain the probabilistic equivalent model of
ADN. The uncertain property of RES is preserved and



aggregated to the boundary bus using the properties of cu-
mulant and the approximately linear relationship between
the equivalent boundary power injection and the internal
power injection in ADN.

PEMM is formulated to incorporate the correlated power
injection through the orthogonal transformation, which can
extend the scope of PEMM to the equivalent modeling of
ADN with the correlated RES embedded.

With the copula function, a sampling method is used to
generate the correlated samples and the joint cumulants,
which serve as the input data for PEMM to build a more
accurate probabilistic equivalent model for ADN.
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The rest of this paper is organized as follows. Stochastic
injection in ADN is formulated in Section II. In Section III,
PEMM for ADN is proposed and extended to incorporate the
correlated power generation of RES. A sampling method to
generate the correlated samples and the joint cumulants using
the copula function is also proposed in Section III. In Section
IV, case studies are taken to evaluate the performance of the
proposed modeling method. Finally, conclusions are given in
Section V.

II. STOCHASTIC INJECTION MODELING IN ADN

Active distribution network (ADN) is characterized by high
penetration of RES, which is inherently stochastic due to the
natural condition. Besides, the loads in ADN are uncertain due
to predictive errors and their inherent stochastic characteristic.
In this section, the uncertain of the power injection of ADN
is described. The model of PVs is presented firstly, followed
by the model of wind power and load.

A. Model of PVs

Typically, ADN is equipped with PV plants to supply usable
solar power. Beta distribution is used to model the uncertainty
of solar irradiance [13]:
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where r and rp,.x are the solar irradiance and maximum solar
irradiance, respectively. « and (8 are the function parameters,
and I" represents the I' function.

Accordingly, the PDF of the active power output of PV plant
is formulated as:
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where 7, is the comprehensive conversion efficiency of PV
plant and A is the areas of the PV cells within one PV plant.

With the capacitor compensator and the control strategies
used in the PV plant, the reactive power output of PV plant
Qpv is proportional to the F,.

va,max = Anpv'rmaxa
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B. Model of Wind Power

Weibull distribution is commonly used to describe the
probabilistic property of wind speed [10]:
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where x is the wind speed, k is the shape parameter of the
distribution , A is the scale parameter of the distribution.
Relationship between the wind speed and the output power
of a wind farm is formulated as [10]:
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where v, Ve, and vy are the cut-in, cut-out, and the nominal
wind speed, respectively; g(v) is the function which describes
the relationship between the power output and the wind speed
in the interval of wind speed [v., vn]| and can be expressed as:

1 .
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where p is the air density (typically 1.25 km/m?®), 3 is the
pitch angle (in degrees), R is the blade radius (in meters),
Cp(A, B) is the wind-turbine power coefficient.

Similar to PV plant, the reactive power generated by a wind
farm can be calculated as:

Qw = Py\/1 — cos?¢/cos p,

where cosyp is the power factor of the wind farm.
C. Load

Considering the time-varying and uncertain characteristic of
load, the normal distribution is commonly used to describe the
active power load uncertainty [13], [14]:
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where f(P,) is the PDF of active power load; i, and o, are
the mean and standard derivation of the active power load,
respectively.

The PDF of reactive power load can be similarly derived.

III. PROBABILISTIC EQUIVALENT MODELING OF ADN

Generally, the transmission and distribution systems are
interconnected via the boundary bus, as illustrated in Fig. 1.
To enhance the efficiency of analysis upon the transmission
system, the goal of PEMM is to replace the ADN with the
equivalent boundary power injection, which can retain the
consistency of load flow and the consistency of probabilistic
characteristics of RES in ADN.
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Fig. 1. An illustrative example of the CTDS.



A. Approximate Linearization

The nodal voltage equations of the CTDS can be expressed
in matrix form:
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where Y is the bus admittance matrix, V is the nodal voltage
vector, I is the nodal current injection vector and subscript E,
B, I denote the element of matrix and vector corresponding to
the buses of ADN, the boundary buses and the buses of the
transmission network, respectively.

By performing the Gaussian elimination on (9) to eliminate
Vg and transforming nodal current injection into nodal power
injection, the nodal voltage equations of the boundary buses
in the equivalent network are expressed as:

(Yps — YeYee ' YVis) Ve + Y Vi =
(diag[Vg]™1)*Sp — YeYee ' (diag[Ve] 1)*Se’, (10)
where § is the nodal power injection, ()* denotes the conju-
gate operator and diag[*] is the diagonal operator.

Derived from (10), the equivalent boundary nodal power
injection can be formulated as:

ASB = —dlag[VB]YBEYEE_ldlag[VE]_1SE (11)

Hence, ASB is determined jointly by the YBEYEE s
Vs, Vi and SE at a base operating point. Assuming that
YBEYEE VB and VE are constants at a given operating
point, the equlvalent boundary power injections APy and
AQy are approximately linear to Pg and Qg:

APy = EpPg + EqQY, (12)
AQgp = —EoPg + EpQy, (13)
where Ep, Eq, Fp and F are the coefficient as:
Ep = Cpidiag(|Vg|) 2Vige + Cpadiag(|VE]) Vi m,
EQ = CBldiag(|VE|)_2VEJm — (7]32Cli3.g(|‘/E|_2‘/E,Re7
(14)
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+diag[Vpre](YeeYre ™"

where (%)gre and (*)p, represent the real and imaginary part
of (x), respectively; | * | denotes the magnitude of complex
number.

Due to the emerging proliferation of the power generation
from RES and the uncertain load, the nodal power injections of
the ADN are stochastic. Traditional static equivalent technique,
such as Ward equivalent and Radial Equivalent Independent,
can only guarantee the consistency of load flow under specific
operation states, without the consideration of maintaining the
consistency of the probabilistic characteristics. Hence, they
are not suitable for the equivalent modeling of ADN with
uncertain injections.

)Im7

B. Probabilistic Equivalence Using Cumulant

In this paper, a probabilistic equivalent modeling method
using the cumulant is proposed to keep the consistency of both
the load flow and the probabilistic characteristics together. The
readers are referred to [15] for the basics of cumulants.

Let 75%)5 and 'ygfll be the v-th cumulants of the active power
generation and the active power load in ADN, respectively.
The definition of 'ygg)E and 'ygjl)ﬁ are similar.

Supposed that the nodal power generation and the nodal
load are independent, the v-th cumulants fyg;) and v-th cumu-
lants of reactive power injection 782

the additivity of cumulant:
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After we obtain the *y( Y and 'y(QE), we can deduce the
expressions for the Cumulants of equivalent boundary nodal
power injections. For the sake of clarity, we first suppose
that the nodal power injections in ADN are uncorrelated.
According to (12) and (13) , the v-th cumulants of equivalent

boundary nodal power injections can be deduced as:

can be obtained using

Yok, = Bo™ ) + Bo™ v, (17)
Y = B + Bra) (18)

where [#]°V is the Hadamard power operator.

It is noted that the derivation presented above take the ad-
vantage of the additivity and the homogeneity of the cumulant
and the additivity relying on the condition that the stochastic
variables are independent.

With 'y(A”}))B and ’Y(A%B’ the moments of equivalent boundary
nodal power injection can be obtained using the relationship
between cumulants and moments [15]. Thus, the probabil-
ity characteristics of the power injections in ADN can be
preserved and aggregated to the boundary buses. PEMM
proposed in this paper utilizes the property of the cumulant
to construct the probabilistic equivalent model, avoiding the
complicated calculation of convolution. Compared with the
original CTDS, the equivalent network obtained from PEMM
is less complicated while still preserving the consistency of the
probabilistic characteristic and the consistency of load flow.

C. Consideration of Correlation

The PEMM derived in section III-B does not consider the
correlation of RES in the ADN. This section uses orthogonal
transformation to incorporate the correlation into PEMM [16].
For convenience, we focus on discussing the correlation of
active power generation.

Let P be the correlated active power injections vector in

ADN:
P:(p17p27"' vpm)a (19)

with Pearson correlation coefficient matrix Cj,.
C,, is usually symmetric and also positive definite. Thus,
Cholesky decomposition can be used to decompose C|, [16]:
C,=GG". (20)
Then, the correlated active power injections P can be
transformed into uncorrelated random variables P':
P =G 'P. (1)
Conversely, the corresponding inverse orthogonal transfor-
mation can be expressed as:

P=GP. (22)



As formulated in (22), we can express the correlated v-
th cumulants of nodal active power injection in ADN as the
weighted linear combination of independent v-th cumulants
using the inverse orthogonal transformation:

ZQJT’YP/ ) J:172a , 1,

is the uncorrelated cumulant of active power

7Y = (23)

where 71(3/)

injection in bus j of ADN , m is the number of buses of
ADN, and g7, is the j th row and r th column element of
matrix G*.

By performing the orthogonal transformation, the correlated
active power injections P can be transformed into uncorrelated
random variables. Then, substituting (23) into (17) and (18)
yields:

’YXJI)DB — EP 'Y(U) + FE OU’YC(QUF) (24)
Voo, = —EQ“’%;? + B, (25)

The elements of Ep ~ and EQ can be calculated by:

Ehir me G T=1,2,--- 26)

7m’

m

E eqﬂk Grs T=1,2,---,m,
k=r

where e;’ i% 18 the element of Ep°” in ith row and kth column,
egﬂk is the element of EQOU in 7th row and kth column; 7 is
the index of the boundary buses and r is the index of the buses
of ADN .

With (24) and (25), PEMM can take the correlation of
active power injections in ADN into account. The similar
procedure can be used to consider the correlated reactive

power injections.

D. The Joint Cumulant of the Power Injection in ADN

When applying the PEMM for ADN, the first step is to
obtain the cumulants of the power injections in ADN. In case
that the outputs of wind farms and PV plants are correlated,
the ’71(31;3 - fy](;i?nd - fyézp)v . and 78“1,“ are supposed to be the
joint cumulants.

In the case that multiple PV plants or wind farms are
integrated in a ADN, the probabilistic model for the renewable
power generation is actually the multivariate distribution.
However, it is intractable to obtain the joint probability distri-
bution function for this multivariate distribution, and therefore
it is difficult to obtain the joint cumulants directly [10].

Copula function can connect multiple univariate distribu-
tions to a multivariate distribution [17]. With marginal proba-
bility distributions for each random power injections and the
correlation information such as Pearson correlation coefficient
p, copula function can be used to connect these dispersive
marginal probability distributions and to generate the samples
of the correlated random variables.

In this section, we develop a sampling method to obtain the
joint cumulants of the correlated renewable power generation
using the copula function.

Sklar theorem states that any multivariate joint distribution
F(xy,xo,--- ,xn) can be expressed in the combination of
N univariate marginal CDFs Fj(x1), Fo(z2), -, Fn(znN)
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Assume the Pearson correlation coefficient can be obtained
from the historical data, the Gaussian copula function is used
to obtain the correlated samples of power generations in ADN.
The CDF of the Gaussian copula function can be expressed
as:

F(:L‘lvx27"' axN)

“Hun)),

(29)
where p is the Pearson correlation coefficient matrix; ¢, is the
CDF of the standard multivariate Guassian distribution with
correlation coefficient matrix p and ¢~! is the inverse CDF
of standard univariate Guassian distribution.

Provided that the marginal CDF of each renewable power
generation and p are available, the steps to obtain the joint
cumulants of the renewable power generation are as follows:

C(Ul,UQ,"' ,UN;p) = @p(‘p_l(ul)a<p_l(u2)v"' y P

step 1: Obtain the CDF of the Gaussian copula function .
step 2: With the help of Gibbs sampling technique [18], ob-
tain the samples of the Gaussian copula distribution
Cnxym = [c1,c2,- -+ ,cprl], where N is the number
of sample and M is the dimension of variable.
Obtain the correlated samples X yxas =
[€1, T2, - ,xp] with the C nx s and the marginal
CDF of each renewable power generation F:

Yey), i=1,2,---, M.

Obtain the joint moments of the renewable power
generations based on the correlated samples x.; =
[T14, T2i, - - ,JCM]TI

N

avyg}i = Z((L’ji)v/N,’U = 1,2,' LN

Jj=1

step 3:

@ = F (30)

step 4:

&1V

step 5: Obtain the joint cumulants of the renewable power
generations using the relationship between moments

and cumulants [15].

As for the uncertain loads in ADN, since the normal dis-
tribution is used to describe their uncertainty, their cumulants
can be calculated by:

Y = p 4P =024 =0 for v>3 (32

E. PEMM for ADN

Figure 2 shows the flowchart of the PEMM to establish the
probabilistic equivalent model of ADN. Because the PEMM
only rely on the data available for the ADN, the probabilistic
equivalent model can be constructed by the DSOs indepen-
dently. This is helpful under the scenario that TSOs and DSOs
function independently. With the help of the probabilistic
equivalent model, TSOs can evaluate the impact of renewable
power generation for the transmission system without knowing
the detailed model of ADN. Thus, PEMM can be used to
protect the commercially sensitive information and to help
TSOs and DSOs collaborate in a secure and economic manner.



[Input the operation data of ADN]
I

Obtain the cumulants Obtain the joint

cumulants of the
conclat}cd RES

of the uncertain loads
usin% (36)

|[Obtain the correlated samples ]l
|

Obtain the joint cumulants of the power injection; Obtain
the weight coefficient matrices using (14)

| [ Obtain the joint moments ] |

Convert the correlated cumulants to the uncorrelated
cumulants using the orthogonal transformation in (21)

| [ Obtain the joint cumulants | |
______ —

[ Modify the weight coefficient matrices _using (28) and (29) |

Obtain the cumulants of the equivalent boundary
power injection using (30) and (31)

(Output the probabilistic equivalent model of ADN)
Fig. 2. The flowchart of PEMM for ADN.

IV. CASE STUDIES

To demonstrate the effectiveness of the proposed method,
simulations are taken on a CTDS. The transmission side of
this CTDS is the modified IEEE 30-bus system shown in
Fig. 3 and the detailed parameters of this system can be
referred to [19]. The distribution side of this CTDS is based
on the modified IEEE 34-bus system shown in Fig. 1 and
the detailed parameters of this system can be found in [20].
The voltage bases of the transmission system and the ADN
is 135 kV and 24.9 kV, respectively. The ADN is connected
to the transmission system through bus 20 in the transmission
system, which is regarded as the boundary bus.

The ADN incorporates six wind farms (WF) and four PV
plants and the installed node and the capacities of them is
shown in Table I. The v, vco, and vy of wind turbines in these
six wind farm are the 2 m/s, 14 m/s, and 11 m/s, respectively.
The power factor of the wind farm is 0.98 (lagging). The shape
parameter of the distribution of wind speed is 2.4 and the
scale parameter is 7. With respect to PV plants, the parameters
of the distribution of active power output are 0.52 and 2.6,
respectively. For the uncertain loads in ADN, the expected
value and the standard deviation is included in [20].

The correlation of wind speeds among the six wind farms
is considered, so is the correlation of solar irradiances among
four PV plants. The correlation coefficients for the wind speeds
or the solar irradiances within the same node are relatively
high. The Pearson correlation coefficient matrices for the wind
speeds in the wind farms and for the solar irradiances in four
PV plants are as follows:

1 09 06 06 04 04
09 1 06 06 04 04
106 06 1 09 05 05
Pwind= | 06 06 09 1 05 05 |°
04 04 05 05 1 09
04 04 05 05 09 1
1 09 05 05
o9 1 05 05
Pv =105 05 1 09

05 05 09 1

A. Verification of the Sampling Method Using the Gaussian
Copula Function

In this case, to verify the effectiveness of the proposed
sampling method, the wind speed samples of two wind farms

R TABLE 1
| ’ Obtain the CDF of the | | CONFIGURATION OF RES GENERATION UNITS
Gaussian copula function | Node 4 9 13 17 34
obiain the samples of e | |  Type and number of RES WE 2 WFE2 PV,2 PV,2 WE2
> 2 a Capacity per RES (MW) 0.2 0.2 0.1 0.1 0.2

¢
P 130
Fig. 3. The modified IEEE 30-bus power system with ADN integrated.

in node 4 of ADN obtained from the proposed sampling
method are compared with the predefined Weibull distribution.
It is noted that there are two wind farms in node 4, the Person
correlation coefficient of the wind speeds among them is 0.9
and the number of samples is 10000.

Kolmogorov-Smirnov test [21] is conducted to test whether
the samples are drawn from the predefined distribution. In
this case, the result of Kolmogorov-Smirnov test failed to
reject the null hypothesis that the samples generated by our
proposed sampling method come from the predefined Weibull
distribution at the 1% significance level with the asymptotic
p-value 0.8228. Moreover, the correlation coefficients for the
wind speed samples of the two wind farms in node 4 is 0.898,
which is pretty close to the predefined value 0.9. Hence, the
results verify the proposed sampling method using the copula
function can generate satisfactory correlated samples.

Table II shows the cumulants of the total wind power
generation in node 4 of ADN from the proposed sampling
method, which is denoted as S1, and from the independent
sampling method, which is denoted as S2. We can see the
cumulants from S1 are much larger than the those from S2
except the first order cumulants. Since the first order cumulant
is the expected value and the second order cumulant is the
variance, the results in Table II indicates that the wind power
generation samples from S1 are more variant than those from
S2. This result is consistent with the positively correlated
nature of the wind speeds of these two farms.

TABLE I
THE CUMULANTS OF POWER GENERATION IN NODE 4

Fyllﬂg,wind/]'oi3 7}23g,wind/1077 ’Y;’:’g,wind/l()710
S1 1.38 6.63 1.01
S2 1.37 3.56 0.30

4 —13
'VPg,Wind/lo

S1 -3.37
S2 -0.51

5 —16
’YPg,wind/lo

-3.19
-0.22

6 —-19
’\/Pg,wind/lo

9.01
0.31

B. Evaluation of the Probabilistic Equivalent Model Using the
Cumulant Based Probabilistic Load Flow

Probabilistic load flow (PLF) is an essential tool to ana-
lyze the states of power system considering the uncertainty.



Performing PLF on the probabilistic equivalent model and the
original system, respectively, we can evaluate the accuracy
of the probabilistic equivalent model by comparing the results
from the equivalent model with those from the original system.

With the cumulants of the equivalent boundary power
injection obtained from PEMM, the probabilistic equivalent
model can be readily integrated into the cumulant based
probabilistic load flow (CPLF) [22]. The equivalent boundary
power injection can be regarded as an equivalent generator
representing the ADN. Then CPLF can be performed on the
probabilistic equivalent model and its detailed procedure is as
follows [22]:
step 1: Compute the cumulants of the equivalent boundary
power injection using PEMM.

Compute the cumulants of the power injections of
other buses except for boundary bus according to the
given probabilistic distribution.

Compute the cumulants of the state variables in-
cluding voltage and branch flow according to the
cumulants of the power injections and the linearized
power flow equation.

Calculate the Gram-Charlier expansion coefficients
of the state variables using the corresponding cu-
mulants and obtain the CDF and PDF of the state
variables.

In this case, the CPLF is run on the probabilistic equivalent
model. For convenience, the probabilistic equivalent model
obtained from the proposed PEMM is denoted as M1 while
the probabilistic equivalent model obtained from the PEMM
neglecting the correlation is denoted as M2. There are two
differences between the M1 and the M2: one is that the M2
is derived from (17) and (18) whereas the M2 is derived from
(24) and (25); the other is that the cumulants of the renewable
power generation of M1 are obtained from S1 while those of
M2 are obtained from S2. The results of the CPLF based on
the original system are regards as the benchmarks.

The relative errors of the cumulants of state variables are

regarded as the index of the accuracy:
v

) 5m,§ = ‘(’Y;;L,s - IV:O)/IY:OL ) (33)
where ¢ is the relative error; m is the index of equivalent

model; s is the type of state variables, which includes the
voltage magnitudes of PQ nodes, the voltage phase angle of
PQ and PV nodes, the active and reactive power flow of branch
and reactive power flow of branch; 0 represents the cumulants
of the state variables of the original test system.

Fig. 4 through 6 depict the relative error index of the
cumulants of the voltage magnitude, the active power flow of
branch and the reactive power flow of branch, respectively. The
errors of the first order cumulant of the state variables for both
M1 and M2 are pretty small. Since the first order cumulant
is the expect value of the variables, this result demonstrates
the probabilistic equivalent model obtained from the PEMM
can retain the consistency of the load flow under the basic
operation condition. Moreover, the errors of the second order
cumulant of the state variables for M1 is smaller than those
of M2. The minor error in the second order cumulant verifies
that M1 can capture the probabilistic characteristics and sub-
stantiate the effectiveness of PEMM. Besides, the comparison
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step 4:
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Fig. 4. The relative error index of the cumulants w.r.t. the voltage magnitude.
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Fig. 5. The relative error index of the cumulants w.r.t. the active power flow.
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Fig. 6. The relative error index of the cumulants w.r.t. the reactive power
flow.

results demonstrate the necessity of the consideration of the
correlation of the distributed RES.

Furthermore, the errors of the higher-order cumulant of the
state variables for M1 is much smaller than those of M2 and
all the errors of M1 are less than 0.2. Hence, we can conclude
that the results of CPLF based on the probabilistic equivalent
model which is obtained from the proposed PEMM is pretty
close to the results of CPLF based on the original test system.
Besides, the consideration of the correlation between the
RES can improve the accuracy of the probabilistic equivalent
model.

The computation time of the CPLF based on the original test
system is 1.821s while the computation time of CPLF based
on M1 is 0.542s. Using the probabilistic equivalent model, the
computation time is reduced by 70.2%. Thus, the efficiency
of the analysis upon the transmission network with the CPLF
can be enhanced much as well.

C. Evaluation of the Probabilistic Equivalent Model Using
Monte Carlo Simulation Based PLF

To further demonstrate the effectiveness of the proposed
PEMM and evaluate the accuracy of the probabilistic equiv-
alence model, the Monte Carlo simulation based PLF (MCS-
PLF) is run on the model M1 and M2, respectively. The results
of the MCS-PLF which is run on the original test system
are considered as benchmarks. The number of Monte-Carlo
simulation is 10000.



MCS-PLF relies on the samples of variables and the de-
terministic load flow. The procedure of MCS-PLF using the
probabilistic equivalent model is developed as follows:

Compute the cumulants of the equivalent boundary
power injection using PEMM.

Calculate the Gram-Charlier expansion coefficients
of the the equivalent boundary power injection using
the corresponding cumulants and then obtain the
CDF of the equivalent boundary power injection Feg.
Generate the samples of the uniform distribution
Uy = [ug,ug, -+ ,up] and obtain the samples of
the equivalent boundary power injection using the
inverse CDF: ¢; = Feg(l(ui) 1=1,2,--- M

Run the deterministic load flow based on the samples
of the equivalent boundary power injection.

Obtain the statistics of the state variables according
to the results of the deterministic load flow.

step 1:

step 2:

step 3:

step 4:

step 5:

The Bhattacharyya distance is used to measure the simi-
larity of the probability distributions of the state variables,
of which the type is the same as that in the CPLF. The
Bhattacharyya distance is considered to a reliable index since
it takes not only the means but also the standard deviations
into account. Consequently, when two probability distributions
have the same means but different standard deviations, the
Bhattacharyya distance grows depending on the difference
between the standard deviations [23], [24]. Hence, the Bhat-
tacharyya distance between the probability distributions of the
state variables of the probabilistic equivalent model and the
original test system is applied to evaluate the accuracy of the
probabilistic equivalent model.

Figs. 7 through 9 show the Bhattacharyya distances with
respect to the voltage magnitude, the active power flow of
branch and the reactive power flow of branch, respectively.
The Bhattacharyya distances for branch flow of branch 13,
37, 38 and 39 are not shown because they are constants
instead of variables in this case. In this case, the Bhattacharyya
distances are small, which can verify the equivalent model
can capture the probabilistic characteristics of ADN and the
probabilistic equivalent model can be incorporated into MCS-
PLF successfully.

All the Bhattacharyya distances between the state variables
of M1 and the state variables of the original test system are
smaller than those between the state variables of M2 and the
state variables of the original test system. Thus, the figures
also demonstrate that considering the correlation of RES is
necessary and can improve the accuracy of the probabilistic
equivalent model.

Figs. 10 through 12 show the PDF curves of some state
variables of the M1, the M2 and the original test system,
respectively. These state variables are selected from the buses
or branches which are close to the boundary bus. Hence, they
are more likely to be affected by the equivalent model and
are suitable to be used to evaluate the performance of the
equivalent model. Compared with the M2 curves, the M1
curves are closer to the original curves than the M2 curves,
which can further substantiate the conclusion we draw in the
last paragraph.
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The computation time of the MCS-PLF based on the o-
riginal test system is 53.15s while the computation time of
MCS-PLF based on M1 is 15.34s. Using the probabilistic
equivalent model, the computation time is reduced by ap-
proximately 71.1%. Hence, the efficiency of the analysis upon
the transmission network with the MCS-PLF can be enhanced
much.

V. CONCLUSIONS AND FUTURE WORK

A probabilistic equivalent modeling method (PEMM) for
ADN considering the uncertainty of RES is proposed in
this paper. The mathematical formulation of the PEMM is
investigated and extended to take the correlation of RES into
account. Moreover, as the source of input data for PEMM,
a sampling method which is based on the Gaussian copula
function is developed to formulate the correlation of RES
and to generate the correlated renewable power generation
samples and cumulants. The results of case studies support
the following conclusions: 1. the results of the Kolmogorov-
Smirnov test and the assessment of the correlation coefficient
verify the effectiveness and the practicality of the proposed
sampling method; 2. the simulation studies based on CPLF
and MCS-PLF demonstrate that the results of PLF using the
probabilistic equivalent model is pretty close to those using the
original model. Moreover, the comparative results concerning
the correlation of RES substantiate that the consideration of
correlation of RES can enhance the accuracy of the equivalent
model; 3. the comparative results on computation time demon-
strate using the PEMM can reduce the computation time by
approximately 70% while keeping the high accuracy, thereby
enhancing the efficiency of the analysis of the transmission
network.

The proposed PEMM could be used to provide the equiva-
lent model for the applications on the transmission network
in which should consider the impact of RES, e.g., static
security analysis, reliability assessment, economic dispatch,
unit commitment, and optimal power flow. Besides, the pro-
posed PEMM could be adopted in the separate operating
environment to coordinate the operation of the transmission
network and the distribution network. These issues could be
further explored in future work.
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